В чем измеряется кпд теплового двигателя. Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей. Значения КПД двигателей

Темой текущего урока будет рассмотрение процессов, происходящих во вполне конкретных, а не абстрактных, как в прошлых уроках, устройствах - тепловых двигателях. Мы дадим определение таким машинам, опишем их основные составляющие и принцип действия. Также в ходе этого урока будет рассмотрен вопрос о нахождении КПД - коэффициента полезного действия тепловых машин, как реального, так и максимально возможного.

Тема: Основы термодинамики
Урок: Принцип действия теплового двигателя

Темой прошлого урока был первый закон термодинамики, который задавал связь между некоторым количеством теплоты, которое было передано порции газа, и работой, совершаемой этим газом при расширении. И теперь пришло время сказать, что эта формула вызывает интерес не только при неких теоретических расчётах, но и во вполне практическом применении, ведь работа газа есть не что иное как полезная работа, какую мы извлекаем при использовании тепловых двигателей.

Определение. Тепловой двигатель - устройство, в котором внутренняя энергия топлива преобразуется в механическую работу (рис. 1).

Рис. 1. Различные примеры тепловых двигателей (), ()

Как видно из рисунка, тепловыми двигателями являются любые устройства, работающие по вышеуказанному принципу, и они варьируются от невероятно простых до очень сложных по конструкции.

Все без исключения тепловые двигатели функционально делятся на три составляющие (см. рис. 2):

  • Нагреватель
  • Рабочее тело
  • Холодильник

Рис. 2. Функциональная схема теплового двигателя ()

Нагревателем является процесс сгорания топлива, которое при сгорании передаёт большое количество теплоты газу, нагревая тот до больших температур. Горячий газ, который является рабочим телом, вследствие повышения температуры, а следовательно, и давления, расширяется, совершая работу . Конечно же, так как всегда существует теплопередача с корпусом двигателя, окружающим воздухом и т. д., работа не будет численно равняться переданной теплоте - часть энергии уходит на холодильник, которым, как правило, является окружающая среда.

Проще всего можно представить себе процесс, происходящий в простом цилиндре под подвижным поршнем (например, цилиндр двигателя внутреннего сгорания). Естественно, чтобы двигатель работал и в нём был смысл, процесс должен происходить циклически, а не разово. То есть после каждого расширения газ должен возвращаться в первоначальное положение (рис. 3).

Рис. 3. Пример циклической работы теплового двигателя ()

Для того чтобы газ возвращался в начальное положение, над ним необходимо выполнить некую работу (работа внешних сил). А так как работа газа равна работе над газом с противоположным знаком, для того чтобы за весь цикл газ выполнил суммарно положительную работу (иначе в двигателе не было бы смысла), необходимо, чтобы работа внешних сил была меньше работы газа. То есть график циклического процесса в координатах P-V должен иметь вид: замкнутый контур с обходом по часовой стрелке. При данном условии работа газа (на том участке графика, где объём растёт) больше работы над газом (на том участке, где объём уменьшается) (рис. 4).

Рис. 4. Пример графика процесса, протекающего в тепловом двигателе

Раз мы говорим о некоем механизме, обязательно нужно сказать, каков его КПД.

Определение. КПД (Коэффициент полезного действия) теплового двигателя - отношение полезной работы, выполненной рабочим телом, к количеству теплоты, переданной телу от нагревателя.

Если же учесть сохранение энергии: энергия, отошедшая от нагревателя, никуда не исчезает - часть её отводится в виде работы, остальная часть приходит на холодильник:

Получаем:

Это выражение для КПД в частях, при необходимости получить значение КПД в процентах необходимо умножить полученное число на 100. КПД в системе измерения СИ - безразмерная величина и, как видно из формулы, не может быть больше одного (или 100).

Следует также сказать, что данное выражение называется реальным КПД или КПД реальной тепловой машины (теплового двигателя). Если же предположить, что нам каким-то образом удастся полностью избавиться от недостатков конструкции двигателя, то мы получим идеальный двигатель, и его КПД будет вычисляться по формуле КПД идеальной тепловой машины. Эту формулу получил французский инженер Сади Карно (рис. 5):

В реальной действительности работа, совершаемая при помощи какого - либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу - $A_{poln}$. При этом имеем:

Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $\eta $, тогда:

\[\eta =\frac{A_p}{A_{poln}}\ \left(2\right).\]

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\ \left(2\right).\]

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия - это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

КПД при передаче энергии

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

\[\eta =\frac{A_p}{Q}\cdot 100\%\ \left(5\right).\]

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

\[\eta =\frac{Q_n-Q_{ch}}{Q_n}\left(6\right),\]

где $Q_n$ - количество теплоты, полученное от нагревателя; $Q_{ch}$ - количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

\[\eta =\frac{T_n-T_{ch}}{T_n}\left(7\right),\]

где $T_n$ - температура нагревателя; $T_{ch}$ - температура холодильника.

Примеры задач на коэффициент полезного действия

Пример 1

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $\Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?\textit{}

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

Воспользуемся определением коэффициента полезного действия для его нахождения:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\left(1.3\right).\]

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

\[\eta =\frac{mgh}{N\Delta t}\cdot 100\%.\]

Ответ. $\eta =\frac{mgh}{N\Delta t}\cdot 100\%$

Пример 2

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $\eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

\[\eta =\frac{A_p}{Q}\left(2.1\right).\]

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

Газ совершает полезную работу, которую равна:

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_{34}$). В результате имеем:

Преобразуем формулу (2.1) учитывая результаты (2.2) - (2.4):

\[\eta =\frac{A_{12}+A_{34}}{A_{12}}\to A_{12}\eta =A_{12}+A_{34}\to A_{34}=(\eta -1)A_{12}\left(2.4\right).\]

Так как по условию $A_{12}=A_0,\ $окончательно получаем:

Ответ. $A_{34}=\left(\eta -1\right)A_0$

Цель: познакомится с тепловыми двигателями, которые используются в современном мире.

В ходе работы мы попытались ответить на следующие вопросы:


  • Что такое тепловой двигатель?

  • Каков принцип его действия?

  • КПД теплового двигателя?

  • Какие типы тепловых двигателей существуют?

  • Где они применяются?
Тепловой двигатель.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но располагать запасами энергии еще не достаточно. Необходимо уметь за счет энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели – устройства, способные совершать работу. Большая часть двигателей на Земле – это тепловые двигатели.

В простейшем опыте, который заключается в том, что в пробирку наливают немного воды и доводят ее до кипения (причем пробирка изначально закрыта пробкой), пробка под давлением образовавшегося пара поднимается вверх и выскакивает. Другими словами, энергия топлива переходит во внутреннюю энергию пара, а пар, расширяясь, совершает работу, выбивая пробку. Так внутренняя энергия пара превращается в кинетическую энергию пробки.

Если пробирку заменить прочным металлическим цилиндром, а пробку поршнем, который плотно прилегает к стенкам цилиндра и свободно перемещаться вдоль них, то получится простейший тепловой двигатель.

Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую энергию.


Принципы действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через Т 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле.

В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 . Эта температура не может быть ниже температуры окружающей среды, так как в противном случае давление газа станет меньше атмосферного и двигатель не сможет совершить работу. Обычно температура Т 2 несколько больше температуры окружающей среды. Ее называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара – конденсаторы . В последнем случае температура холодильника может быть ниже температуры атмосферы.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть теплоты неизбежно передается холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии теряется.

Тепловой двигатель совершает рабату за счет внутренней энергии рабочего тела. Причем в этом процессе происходит передача теплоты от более горячих тел (нагревается) к более холодным (холодильнику).

П
ринципиальная схема изображена на рисунке.

Коэффициент полезного действия (КПД) теплового двигателя.

Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы теплота могла самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла быть полностью превращена в полезную работу с помощью любого теплового двигателя.

Коэффициентом полезного действия теплового двигателя η называется выраженное в процентах отношение полезной работы А п, совершенной двигателем, к количеству теплоты Q 1 , полученной от нагревателя.

Формула:

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то η

Максимальное значение КПД

Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя. Впервые это сделал французский инженер и ученый Сади Карно (1796-1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824г.).

К
арно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он получил для КПД этой машины следующее значение:

Т 1 – температура нагревателя

Т 2 – температура холодильника

Главное значение этой формулы состоит в том, как доказал Карно, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника.

Но температура холодильника не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие неполного сгорания и т.д. Реальные возможности для повышения КПД здесь еще остаются большими.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания - это тепловая машина, в которой в качестве рабочего тела используются газы высокой температуры, образующиеся при сгорании жидкого или газообразного топлива непосредственно внутри камеры поршневого двигателя.

Строение четырехтактного автомобильного двигателя.


  • цилиндр,

  • камера сгорания,

  • поршень,

  • входной клапан;

  • выходной клапан,

  • свеча;

  • шатун;

  • маховик.

Некоторые сведения
о двигателях

Тип двигателя

Карбюраторный

Дизельный

Рабочее тело

Воздух, насыщенный парами бензина

Воздух

Топливо

Бензин

Мазут, нефть

Максимальное давление в камере

610 5 Па

1,510 6 - 3,510 6 Па

Температура, достигаемая при сжатии рабочего тела

360-400 ºС

500-700 ºС

Температура продуктов сгорания топлива

1800 ºС

1900 ºС

КПД:

для серийных машин для лучших образцов

Работа ДВС

1 такт - "всасывание" поршень движется вниз, через впускной клапан в камеру сгорания всасывается горючая смесь - пары бензина с воздухом. В конце такта всасывающий клапан закрывается;

2 такт - "сжатие"- поршень поднимается вверх, сжимая горючую смесь. В конце такта в свече проскакивает искра, и горючая смесь воспламеняется;

3 такт - "рабочий ход"- газообразные продукты сгорания достигают высокой температуры и давления, с большой силой давят на поршень, который опускается вниз, и с помощью шатуна и кривошипа приводит во вращение коленчатый вал;

4 такт - "выхлоп"- поршень поднимается вверх и через выходной клапан выталкивает отработавшие газы в атмосферу. Температура выбрасываемых газов 500 0

В автомобилях используют чаще всего четырехцилиндровые двигатели. Работа цилиндров согласуется так, что в каждом из них поочередно происходит рабочий ход и коленчатый вал все время получает энергию от одного из поршней. Имеются и восьмицилиндровые двигатели. Много цилиндровые двигатели в лучшей степени обеспечивают равномерность вращения вала и имеют большую мощность.

Карбюраторные двигатели применяют в легковых машинах сравнительно небольшой мощности. Дизельные - в более тяжелых машинах большой мощности (тракторы, грузовые тягачи, тепловозы),
на разного рода судах.

Паровая турбина

5 – вал, 4 – диск, 3 – пар, 2 – лопатки,

1 – лопатки.

П аровая турбина является основной частью паросиловой установки. В паросиловой установке из котла в паропровод выходит перегретый водяной пар с температурой около 300-500 0 С и давлением 17-23 МПа. Пар приводит во вращение ротор паровой турбины, который приводит во вращение ротор электрического генератора, вырабатывающего электрический ток. Отработанный пар поступает в конденсатор, где сжижается, образовавшаяся вода с помощью насоса поступает в паровой котел и снова превращается в пар.

Распыленное жидкое или твердое топливо сгорает в топке, подогревая котел.

Строение турбины


  • Барабан с системой сопел - расширяющиеся трубки особой конфигурации;

  • ротор - вращающийся диск с системой лопаток.
Принцип действия

Струи пара, с огромной скоростью (600-800 м/с) вырывающиеся из сопел, направляются на лопатки ротора турбины, давят на них и приводят ротор во вращение с большой скоростью (50 об/с). Происходит преобразование внутренней энергии пара в механическую энергию вращения ротора турбины. Пар, расширяясь при выходе из сопла, совершает работу и охлаждается. Отработанный пар выходит в паропровод, его температура к этому моменту становится немного выше 100° С, далее пар поступает в конденсатор, давление в котором в несколько раз меньше атмосферного. Конденсатор охлаждается холодной водой.

Первая паровая турбина, нашедшая практическое применение, была изготовлена Г. Лавалем в 1889г.

Используемое топливо: твердое - уголь, сланцы, торф; жидкое - нефть, мазут. Природный газ.

Турбины устанавливают на тепловых и атомных электростанциях. На них вырабатывается более 80% электроэнергии. Мощные паровые турбины устанавливают на крупных судах.

Газовая турбина

Важное преимущество этой турбины - упрощенное преобразование внутренней энергии газа во вращательное движение вала

Принцип действия

В камеру сгорания газовой турбины с помощью компрессора подается сжатый воздух при температуре примерно 200° С, и впрыскивается жидкое топливо (керосин, мазут) под большим давлением. Во время горения топлива воздух и продукты сгорания нагреваются до температуры 1500-2200°С. Движущийся с большой скоростью газ направляется на лопасти турбины. Переходя от одного ротора турбины к другому, газ отдает свою внутреннюю энергию, приводя ротор во вращение.

При выхлопе из газовой турбины газ имеет температуру 400-500 0 С.

Получаемая механическая энергия используется, например, для вращения винта самолета или ротора электрического генератора.

Газовые турбины - это двигатели, обладающие большой мощностью, поэтому их применяют в авиации

Реактивные двигатели

Принцип действия

В камере сгорания сгорает ракетное горючее (например, пороховой заряд) и образовавшиеся газы с большой силой давят на стенки камеры. С одной стороны камеры имеется сопло, через которое продукты сгорания вырываются в окружающее пространство. С другой стороны расширяющиеся газы давят на ракету, как на поршень, и толкают ее вперед.

Пороховые ракеты являются двигателями на твердом топливе. Они постоянно готовы к работе, легко запускаются, но остановить или управлять таким двигателем невозможно.

Значительно надежнее в управлении жидкостные ракетные двигатели, подачу топлива в которые можно регулировать.

В 1903 г. К. Э. Циолковский предложил конструкцию такой ракеты.

Реактивные двигатели используют в космических ракетах. На огромных воздушных лайнерах устанавливают турбореактивные и реактивные двигатели.

Использованные ресурсы


  • Физика. Справочник школьника. Научная разработка и составление Т. Фещенко, В. Вожегова: М.: Филологическое общество «Слово», Компания «Ключ-С»,1995. – 576 с.

  • Г.Я. Мякишев, Б.Б. Буховцев. Физика: Учеб. для 10 кл. сред. шк. – 2-е изд. – М.: Просвещение, 1992. – 222 с.: ил.

  • О.Н. Баранова. Выпускная работа слушателя курсов повышения квалификации РЦДО по программе «Интернет – технологии для учителя предметника». Презентация «Тепловые двигатели», 2005

  • http://pla.by.ru/art_altengines.htm - модели двигателей и анимационные картинки

  • http://festival.1september.ru/2004_2005/index.php?numb_artic=211269 Фестиваль педагогических идей «Открытый урок 2004-2005» Л.В. Самойлова

  • http://old.prosv.ru/metod/fadeeva7-8-9/07.htm Физика 7-8-9 Книга для учителя А.А. Фадеева, А.В. Засов

Чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Рабочим телом у всех тепловых двигателей является газ (см. § 3.11), который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через Т 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя.

Роль холодильника

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 . Эта температура не может быть ниже температуры окружающей среды, так как в противном случае давление газа станет меньше атмосферного и двигатель не сможет работать. Обычно температура Т 2 несколько больше температуры окружающей среды. Ее называют температурой холодильника. Холодильником являются атмосфера или специальные устройства для охлаждения и конденсации отработанного пара - конденсаторы. В последнем случае температура холодильника может быть несколько ниже температуры атмосферы.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть энергии неизбежно передается атмосфере (холодильнику) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии безвозвратно теряется. Именно об этом и говорит второй закон термодинамики в формулировке Кельвина.

Принципиальная схема теплового двигателя изображена на рисунке 5.15. Рабочее тело двигателя получает при сгорании топлива количество теплоты Q 1 , совершает работу А" и передает холодильнику количество теплоты |Q 2 | <| Q 1 |.

Кпд теплового двигателя

Согласно закону сохранения энергии работа, совершаемая двигателем, равна

(5.11.1)

где Q 1 - количество теплоты, полученное от нагревателя, a Q 2 - количество теплоты, отданное холодильнику.

Коэффициентом полезного действия теплового двигателя называют отношение работы А", совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

(5.11.2)

У паровой турбины нагревателем является паровой котел, а у двигателей внутреннего сгорания - сами продукты сгорания топлива.

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то η < 1.

Применение тепловых двигателей

Наибольшее значение имеет использование тепловых двигателей (в основном мощных паровых турбин) на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Около 80% всей электроэнергии в нашей стране вырабатывается на тепловых электростанциях.

Тепловые двигатели (паровые турбины) устанавливают также на атомных электростанциях. На этих станциях для получения пара высокой температуры используется энергия атомных ядер.

На всех основных видах современного транспорта преимущественно используются тепловые двигатели. На автомобилях применяют поршневые двигатели внутреннего сгорания с внешним образованием горючей смеси (карбюраторные двигатели) и двигатели с образованием горючей смеси непосредственно внутри цилиндров (дизели). Эти же двигатели устанавливаются на тракторах.

На железнодорожном транспорте до середины XX в. основным двигателем была паровая машина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. Но и электровозы получают энергию от тепловых двигателей электростанций.

На водном транспорте используются как двигатели внутреннего сгорания, так и мощные турбины для крупных судов.

В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах - турбовинтовые и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах.

Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы дешевую электроэнергию и были бы лишены всех видов современного скоростного транспорта.

Современные реалии предполагают широкую эксплуатацию тепловых двигателей. Многочисленные попытки замены их на электродвигатели пока претерпевают неудачу. Проблемы, связанные с накоплением электроэнергии в автономных системах, решаются с большим трудом.

Все еще актуальны проблемы технологии изготовления аккумуляторов электроэнергии с учетом их длительного использования. Скоростные характеристики электромобилей далеки от таковых у авто на двигателях внутреннего сгорания.

Первые шаги по созданию гибридных двигателей позволяют существенно уменьшить вредные выбросы в мегаполисах, решая экологические проблемы.

Немного истории

Возможность превращения энергии пара в энергию движения была известна еще в древности. 130 год до нашей эры: Философ Герон Александрийский представил на суд зрителей паровую игрушку - эолипил. Сфера, заполненная паром, приходила во вращение под действием исходящих из нее струй. Этот прототип современных паровых турбин в те времена не нашел применения.

Долгие годы и века разработки философа считались лишь забавной игрушкой. В 1629 г. итальянец Д. Бранки создал активную турбину. Пар приводил в движение диск, снабженный лопатками.

С этого момента началось бурное развитие паровых машин.

Тепловая машина

Превращение топлива в энергию движения частей машин и механизмов используется в тепловых машинах.

Основные части машин: нагреватель (система получения энергии извне), рабочее тело (совершает полезное действие), холодильник.

Нагреватель предназначен для того, чтобы рабочее тело накопило достаточный запас внутренней энергии для совершения полезной работы. Холодильник отводит излишки энергии.

Основной характеристикой эффективности называют КПД тепловых машин. Эта величина показывает, какая часть затраченной на нагревание энергии расходуется на совершение полезной работы. Чем выше КПД, тем выгоднее работа машины, но эта величина не может превышать 100%.

Расчет коэффициента полезного действия

Пусть нагреватель приобрел извне энергию, равную Q 1 . Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q 2 .

Исходя из определения, рассчитаем величину КПД:

η= A / Q 1 . Учтем, что А = Q 1 - Q 2.

Отсюда КПД тепловой машины, формула которого имеет вид η= (Q 1 - Q 2)/ Q 1 = 1 - Q 2 / Q 1, позволяет сделать следующие выводы:

  • КПД не может превышать 1 (или 100%);
  • для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику;
  • увеличения энергии нагревателя добиваются изменением качества топлива;
  • уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

Идеальный тепловой двигатель

Возможно ли создание такого двигателя, коэффициент полезного действия которого был бы максимальным (в идеале - равным 100%)? Найти ответ на этот вопрос попытался французский физик-теоретик и талантливый инженер Сади Карно. В 1824 его теоретические выкладки о процессах, протекающих в газах, были обнародованы.

Основной идеей, заложенной в идеальной машине, можно считать проведение обратимых процессов с идеальным газом. Начинаем с расширения газа изотермически при температуре T 1 . Количество теплоты, необходимой для этого, - Q 1. После газ без теплообмена расширяется Достигнув температуры Т 2 , газ сжимается изотермически, передавая холодильнику энергию Q 2 . Возвращение газа в первоначальное состояние производится адиабатно.

КПД идеального теплового двигателя Карно при точном расчете равен отношению разности температур нагревательного и охлаждающего устройств к температуре, которую имеет нагреватель. Выглядит это так: η=(T 1 - Т 2)/ T 1.

Возможный КПД тепловой машины, формула которого имеет вид: η= 1 - Т 2 / T 1 , зависит только от значения температур нагревателя и охладителя и не может быть более 100%.

Более того, это соотношение позволяет доказать, что КПД тепловых машин может быть равен единице только при достижении холодильником температур. Как известно, это значение недостижимо.

Теоретические выкладки Карно позволяют определить максимальный КПД тепловой машины любой конструкции.

Доказанная Карно теорема звучит следующий образом. Произвольная тепловая машина ни при каких условиях не способна иметь коэффициент полезного действия больше аналогичного значения КПД идеальной тепловой машины.

Пример решения задач

Пример 1. Каков КПД идеальной тепловой машины, в случае если температура нагревателя составляет 800 о С, а температура холодильника на 500 о С ниже?

T 1 = 800 о С= 1073 К, ∆T= 500 о С=500 К, η - ?

По определению: η=(T 1 - Т 2)/ T 1.

Нам не дана температура холодильника, но ∆T= (T 1 - Т 2), отсюда:

η= ∆T / T 1 = 500 К/1073 К = 0,46.

Ответ: КПД = 46%.

Пример 2. Определите КПД идеальной тепловой машины, если за счет приобретенного одного килоджоуля энергии нагревателя совершается полезная работа 650 Дж. Какова температура нагревателя тепловой машины, если температура охладителя - 400 К?

Q 1 = 1 кДж=1000 Дж, А = 650 Дж, Т 2 = 400 К, η - ?, T 1 = ?

В данной задаче речь идет о тепловой установке, КПД которой можно вычислить по формуле:

Для определения температуры нагревателя воспользуемся формулой КПД идеальной тепловой машины:

η = (T 1 - Т 2)/ T 1 = 1 - Т 2 / T 1.

Выполнив математические преобразования, получим:

Т 1 = Т 2 /(1- η).

Т 1 = Т 2 /(1- A / Q 1).

Вычислим:

η= 650 Дж/ 1000 Дж = 0,65.

Т 1 = 400 К /(1- 650 Дж/ 1000 Дж) = 1142,8 К.

Ответ: η= 65%, Т 1 = 1142,8 К.

Реальные условия

Идеальный тепловой двигатель разработан с учетом идеальных процессов. Работа совершается только в изотермических процессах, ее величина определяется как площадь, ограниченная графиком цикла Карно.

В действительности создать условия для протекания процесса изменения состояния газа без сопровождающих его изменений температуры невозможно. Нет таких материалов, которые исключили бы теплообмен с окружающими предметами. Адиабатный процесс осуществить становится невозможно. В случае теплообмена температура газа обязательно должна меняться.

КПД тепловых машин, созданных в реальных условиях, значительно отличаются от КПД идеальных двигателей. Заметим, что протекание процессов в реальных двигателях происходит настолько быстро, что варьирование внутренней тепловой энергии рабочего вещества в процессе изменения его объема не может быть скомпенсировано притоком количества теплоты от нагревателя и отдачей холодильнику.

Иные тепловые двигатели

Реальные двигатели работают на иных циклах:

  • цикл Отто: процесс при неизменном объеме меняется адиабатным, создавая замкнутый цикл;
  • цикл Дизеля: изобара, адиабата, изохора, адиабата;
  • процесс, происходящий при постоянном давлении, сменяется адиабатным, замыкает цикл.

Создать равновесные процессы в реальных двигателях (чтобы приблизить их к идеальным) в условиях современной технологии не представляется возможным. КПД тепловых машин значительно ниже, даже с учетом тех же температурных режимов, что и в идеальной тепловой установке.

Но не стоит уменьшать роль расчетной формулы КПД поскольку именно она становится точкой отсчета в процессе работы над повышением КПД реальных двигателей.

Пути изменения КПД

Проводя сравнение идеальных и реальных тепловых двигателей, стоит отметить, что температура холодильника последних не может быть любой. Обычно холодильником считают атмосферу. Принять температуру атмосферы можно только в приближенных расчетах. Опыт показывает, что температура охладителя равна температуре отработанных в двигателях газов, как это происходит в двигателях внутреннего сгорания (сокращенно ДВС).

ДВС - наиболее распространенная в нашем мире тепловая машина. КПД тепловой машины в этом случае зависит от температуры, созданной сгорающим топливом. Существенным отличием ДВС от паровых машин является слияние функций нагревателя и рабочего тела устройства в воздушно-топливной смеси. Сгорая, смесь создает давление на подвижные части двигателя.

Повышения температуры рабочих газов достигают, существенно меняя свойства топлива. К сожалению, неограниченно это делать невозможно. Любой материал, из которого изготовлена камера сгорания двигателя, имеет свою температуру плавления. Теплостойкость таких материалов - основная характеристика двигателя, а также возможность существенно повлиять на КПД.

Значения КПД двигателей

Если рассмотреть температура рабочего пара на входе которой равна 800 К, а отработавшего газа - 300 К, то КПД этой машины равно 62%. В действительности же эта величина не превышает 40%. Такое понижение возникает вследствие тепловых потерь при нагревании корпуса турбин.

Наибольшее значение внутреннего сгорания не превышает 44%. Повышение этого значения - вопрос недалекого будущего. Изменение свойств материалов, топлива - это проблема, над которой работают лучшие умы человечества.