Высокого и среднего давления. Гидравлический расчет газопроводов Пример гидравлического расчет газоснабжения среднего давления

Для безопасной и безотказной работы газоснабжения его нужно спроектировать и рассчитать. Важно безупречно подобрать трубы для магистралей всех типов давления, обеспечивающих стабильную поставку газа к приборам.

Чтобы подбор труб, арматуры и оборудования был максимально точным, производят гидравлический расчет трубопровода. Как его сделать? Признайтесь, вы не слишком сведущи в этом вопросе, давайте разбираться.

Мы предлагаем ознакомиться со скрупулезно подобранной и досконально обработанной информацией о вариантах производства гидравлического расчета для газопроводных систем. Использование представленных нами данных обеспечит подачу в приборы голубого топлива с требующимися параметрами давления. Тщательно проверенные данные опираются на регламент нормативной документации.

В статье предельно обстоятельно рассказано о принципах и схемах производства вычислений. Приведен пример выполнения расчетов. В качестве полезного информативного дополнения использованы графические приложения и видео-инструкции.

Любой выполняемый гидравлический расчет представляет собой определение параметров будущего газопровода. Эта процедура является обязательным, а также одним из важнейших этапов подготовки к строительству. От правильности исчисления зависит, будет ли газопровод функционировать в оптимальном режиме.

При осуществлении каждого гидравлического расчета производится определение:

  • необходимого , которые обеспечат эффективную и стабильную транспортировку нужного количества газа;
  • будут ли приемлемыми потери давления при перемещении требуемого объема голубого топлива в трубах заданного диаметра.

Потери давления происходят из-за того, что в любом газопроводе существует гидравлическое сопротивление. При неправильном расчете оно может привести к тому, что потребителям не будет хватать газа для нормальной работы на всех режимах или в моменты максимального его потребления.

Эта таблица является результатом гидравлического расчета, проведенного с учетом заданных значений. Для выполнения вычислений потребуется внести конкретные показатели в столбцы.

Начало участка Конец участка Расчетный расход м³/ч Длина газопровода Внутренний диаметр, см Начальное давление, Па Конечное давление, Па Перепад давления, Па
1 2 31,34 120 9,74 2000,00 1979,33 20,67
2 3 31,34 150 9,74 1979,33 1953,48 25,84
3 4 31,34 180 7,96 1953,48 1872,52 80,96
4 5 29,46 90 7,96 1872,52 1836,2 36,32
5 6 19,68 120 8,2 1836,2 1815,45 20,75
6 7 5,8 100 8,2 1815,45 1813,95 1,5
4 8 9,14 140 5 1872,52 1806,38 66,14
6 9 4,13 70 5 1815,45 1809,83 5,62

Такая операция представляет собой стандартизированную государством процедуру, которая выполняется согласно формулам, требованиям, изложенным в СП 42-101–2003 .

Исчисления обязан проводить застройщик. За основу принимаются данные технических условий трубопровода, которые можно получить в своем горгазе.

Газопроводы, требующие выполнения расчетов

Государство требует, чтобы гидравлические вычисления выполнялись для всех типов трубопроводов, относящихся к системе газоснабжения. Так как процессы, происходящие при перемещении газа, всегда одинаковые.

К указанным газопроводам относятся следующие виды:

  • низкого давления;
  • среднего, высокого давления.

Первые предназначенны для транспортировки топлива к жилым объектам, всевозможным общественным зданиям, бытовым предприятиям. Причем в частных, многоквартирных домах, коттеджах давление газа не должно превышать 3 кПа, на бытовых предприятиях (непроизводственных) этот показатель выше и достигает 5 кПа.

Второй тип трубопроводов предназначен для питания сетей, причем всевозможных, низкого, среднего давления через газорегуляторные пункты, а также осуществляющих подвод газа к отдельным потребителям.

Это могут быть промышленные, сельскохозяйственные, различные коммунальные предприятия и даже отдельно стоящие, или пристроенные к промышленным, здания. Но в двух последних случаях будут существенные ограничения по давлению.

Перечисленные выше виды газопроводов специалисты условно делят на такие категории:

  • внутридомовые , внутрицеховые , то есть транспортирующие голубое топливо внутри какого-либо здания и доставляющие его к отдельным агрегатам, приборам;
  • абонентские ответвления , использующиеся для поставки газа от какой-то распределительной сети ко всем имеющимся потребителям;
  • распределительные , использующиеся для снабжения газом определенных территорий, например, городов, их отдельных районов, промпредприятий. Их конфигурация бывает различной и зависит от особенностей планировки. Давление внутри сети может быть любым предусмотренным - низким, средним, высоким.

Кроме того, гидравлический расчет выполняется для газовых сетей с разным количеством ступеней давления, разновидностей которых много.

Так, для удовлетворения потребностей могут использоваться двухступенчатые сети, работающие с газом, транспортируемым при низком, высоком давлении или низком, среднем. А также нашли применение трехступенчатые и различные многоступенчатые сети. То есть все зависит только от наличия потребителей.

Несмотря на большое разнообразие вариантов газопроводов гидравлический расчет в любом из случаев схож. Так как для изготовления используются элементы конструкции со схожих материалов, а внутри труб происходят одинаковые процессы.

Гидравлическое сопротивление и его роль

Как указывалось выше, основанием для проведения расчета является наличие в каждом газопроводе гидравлического сопротивления.

Оно действует на всю конструкцию трубопровода, а также на отдельные ее части, узлы - тройники, места существенного уменьшения диаметра труб, запорную арматуру, различные клапаны. Это приводит к потере давления транспортируемым газом.

Гидравлическое сопротивление всегда представляет из себя сумму:

  • линейного сопротивления, то есть действующего по всей длине конструкции;
  • местных сопротивлений, действующих у каждой составляющей части конструкции, где происходит изменение скорости транспортировки газа.

Перечисленные параметры постоянно и существенно влияют на рабочие характеристики каждого газопровода. Поэтому в результате неправильного расчета будут иметь место дополнительные и внушительные финансовые потери по причине того, что проект придется переделывать.

Правила выполнения расчета

Выше указывалось, что процедуру любого гидравлического расчета регламентирует профильный Свод правил с номером 42-101–2003.

Документ свидетельствует, что основным способом выполнения исчисления является использование для этой цели компьютера со специальными программами, позволяющими рассчитать планируемую потерю давления между участками будущего газопровода или нужный диаметр труб.

Любой гидравлический расчет выполняется после создания расчетной схемы, включающей основные показатели. Более того, в соответствующие графы пользователь вносит известные данные

Если нет таких программ или человек считает, что их использование нецелесообразно, то можно применять другие, разрешенные Сводом правил, методы.

К которым относятся:

  • расчет по приведенным в СП формулам - это самый сложный способ расчета;
  • расчет по, так называемым, номограммам - это более простой вариант, чем использование формул, ведь какие-либо исчисления производить не придется, потому что необходимые данные указаны в специальной таблице и приведены в Своде правил, и их просто нужно подобрать.

Любой из методов расчета приводит к одинаковым результатам. А поэтому вновь построенный газопровод будет способен обеспечить своевременную, бесперебойную подачу планируемого количества топлива даже в часы его максимального использования.

Вариант вычислений с помощью ПК

Выполнение исчисления с использованием компьютера является наименее трудоемким - все, что требуется от человека, это вставить в соответствующие графы нужные данные.

Поэтому гидравлический расчет делается за несколько минут, причем для этой операции не потребуется большого запаса знаний, который необходим при использовании формул.

Для его правильного выполнения необходимо взять из технических условий следующие данные:

  • плотность газа;
  • коэффициент кинетической вязкости;
  • температуру газа в своем регионе.

Необходимые техусловия получают в горгазе населенного пункта, в котором будет строиться газопровод. Собственно, с получения этого документа и начинается проектирование любого трубопровода, ведь там содержатся все основные требования к его конструкции.

Каждая труба имеет шероховатость, что приводит к линейному сопротивлению, которое влияет на процесс перемещения газа. Причем, этот показатель значительно выше у стальных изделий, чем у пластиковых

Сегодня нужные сведения можно получить только для стальных и полиэтиленовых труб. В результате проектирование и гидравлический расчет можно выполнять только с учетом их характеристик, чего требует профильный Свод правил. А также в документе указаны необходимые для исчисления данные.

Коэффициент шероховатости всегда приравнивается к следующим значениям:

  • для всех полиэтиленовых труб, причем независимо новые они или нет, - 0,007 см;
  • для уже использовавшихся стальных изделий - 0,1 см;
  • для новых стальных конструкций - 0,01 см.

Для каких-либо других видов труб этот показатель в Своде правил не указывается. Поэтому их использовать для строительства нового газопровода не стоит, так как специалисты горгаза могут потребовать внести коррективы. А это опять же дополнительные расходы.

Расчет расхода на ограниченном участке

Если газопровод состоит из отдельных участков, то расчет суммарного расхода на каждом из них придется выполнять отдельно. Но это несложно, так как для вычислений потребуются уже известные цифры.

Определение данных с помощью программы

Зная изначальные показатели, имея доступ к таблице одновременности и к техническим паспортам плит и котлов, можно приступать к расчету.

Для этого выполняются следующие действия (пример приведен для внутридомового газопровода именно низкого давления):

  1. Количество котлов умножается на производительность каждого из них.
  2. Полученное значение умножается на уточненный с помощью специальной таблицы коэффициент одновременности для этого вида потребителей.
  3. Количество плит, предназначенных для приготовления пищи, умножается на производительность каждой из них.
  4. Полученное после предыдущей операции значение умножается на коэффициент одновременности, взятый из специальной таблицы.
  5. Полученные суммы для котлов и плит суммируются.

Подобные манипуляции проводятся для всех участков газопровода. Полученные данные вводятся в соответствующие графы программы, с помощью которой выполняются исчисления. Все остальное электроника делает сама.

Расчет с использованием формул

Этот вид гидравлического расчета схож с описанным выше, то есть потребуются те же данные, но процедура будет длительной. Так как все придется выполнять вручную, кроме того, проектировщику понадобится осуществить ряд промежуточных операций, чтобы использовать полученные значения для окончательного подсчета.

А также придется уделить достаточно много времени, чтобы разобраться во многих понятиях, вопросах, которые человек не встречает при использовании специальной программы. В справедливости вышеизложенного можно убедиться, ознакомившись с формулами, которые предстоит использовать.


Расчет с помощью формул сложный, поэтому доступный не всем. На картинке изображены формулы для расчета падения давления в сети высокого, среднего и низкого давления и коэффициент гидравлического трения

В применении формул, как и в случае с гидравлическим расчетом с использованием специальной программы, есть особенности для газопроводов низкого, среднего и, конечно же, . И об этом стоит помнить, так как ошибка чревата, причем всегда, внушительными финансовыми издержками.

Вычисления с помощью номограмм

Какая-либо специальная номограмма представляет собой таблицу, где указаны ряд значений, изучив которые можно получить нужные показатели, не выполняя вычислений. В случае с гидравлическим расчетом - диаметр трубы и толщину ее стенок.


Номограммы для расчета являются простым способом получения нужных сведений. Достаточно обратиться к строкам, отвечающим заданным характеристикам сети

Существуют отдельные номограммы для полиэтиленовых и стальных изделий. При расчете их использовались стандартные данные, к примеру, шероховатость внутренних стенок. Поэтому за правильность информации можно не переживать.

Пример выполнения расчета

Приведен пример выполнения гидравлического расчета с помощью программы для газопроводов низкого давления. В предлагаемой таблице желтым цветом выделены все данные, которые проектировщик должен ввести самостоятельно.

Они перечислены в пункте о компьютерном гидравлическом расчете, приведенном выше. Это температура газа, коэффициент кинетической вязкости, плотность.

В данном случае осуществляется расчет для котлов и плит, ввиду этого необходимо прописать точное количество конфорок, которых может быть 2 или 4. Точность важна, ведь программа автоматически выберет коэффициент одновременности.


На картинке желтым цветом выделены колонки, в которые показатели должен ввести сам проектировщик. Внизу приведена формула для расчета расхода на участке

Стоит обратить внимание на нумерацию участков - ее придумывают не самостоятельно, а берут из ранее составленной схемы, где указаны аналогичные цифры.

Далее прописывается фактическая длина газопровода и так называемая расчетная, которая больше. Происходит это потому, что на всех участках, где есть местное сопротивление, необходимо увеличивать длину на 5-10%. Это делается для того, чтобы исключить недостаточное давление газа у потребителей. Программа осуществляет расчет самостоятельно.

Суммарный расход в кубических метрах, для которого предусмотрена отдельная колонка, на каждом участке исчисляется заранее. Если дом многоквартирный, то нужно указывать количество жилья, причем начиная с максимального значения, как видно в соответствующей графе.

В обязательном порядке в таблицу вносятся все элементы газопровода, при прохождении которого теряется давление. В примере указаны клапан термозапорный, отсечной и счетчик. Значение потери в каждом случае бралось в паспорте изделия.

Внутренний диаметр трубы указывается согласно техническому заданию, если у горгаза есть какие-то требования, или из ранее составленной схемы. В этом случае на большинстве участков он прописан в размере 5 см, ведь большая часть газопровода идет вдоль фасада, а местный горгаз требует, чтобы диаметр был не меньше.

Если даже поверхностно ознакомиться с приведенным примером выполнения гидравлического расчета, то легко заметить, что, кроме внесенных человеком значений, присутствует большое количество других. Это все результат работы программы, так как после внесения цифр в конкретные колонки, выделенные желтым цветом, для человека работа по расчету закончена.

То есть само вычисление происходит довольно оперативно, после чего с полученными данными можно отправляться на согласование в горгаз своего города.

Выводы и полезное видео по теме

Этот ролик дает возможность понять, с чего начинается гидравлический расчет, откуда проектировщики берут нужные данные:

В следующем ролике приведен пример одного из видов компьютерного расчета:

Чтобы выполнить гидравлический расчет с помощью компьютера, как это позволяет профильный Свод правил, достаточно потратить немного времени на ознакомление с программой и сбор нужных данных.

Но практического значения все это не имеет, так как составление проекта - процедура гораздо более объемная и включает в себя множество других вопросов. Ввиду этого большинству граждан придется обращаться за помощью к специалистам.

Появились вопросы, нашли недочеты или можете дополнить наш материал ценной информацией? Оставляйте свои комментарии, задавайте вопросы, делитесь опытом в расположенном ниже блоке.

Потребление газа характеризуется большой неравномерностью по месяцам года, дням, неделям и часам суток.

Режим работы системы газоснабжения зданий зависит от многих факторов: в жилых зданиях – от числа и типа установленных газовых приборов, степени благоустройства зданий, климатических условий, времени года, количества людей, проживающих в зданиях; в коммунально-бытовых, общественных и производственных зданиях, помимо перечисленных факторов – от характера работы технологического оборудования и технологических процессов, режима работы цехов и предприятия в целом.

Системы газоснабжения рассчитывают на подачу максимального расчетного часового расхода газа, который определяется по годовой потребности в газе.

Максимальный часовой расход газа на хозяйственные и производственные нужды при нормальных условиях (давлении 0,1 Мпа при 0°С) определяют по формуле

где – годовой расход газа, м 3 /год; − коэффициент перехода от годового расхода газа к максимальному часовому (коэффициент часового максимума расхода газа).

Для жилых и общественных зданий расчетный часовой расход газа определяют с учетом общего числа газовых однотипных приборов n, числа их типов или однотипных групп m, номинального расхода газ одним газовым прибором – по паспорту или технической характеристике , м 3 /ч, и коэффициенту одновременного действия приборов , по формуле

Для расчета газопроводов выполняют гидравлический расчет из условий бесперебойной подачи газа в часы максимального газопотребления.

Расчет трубопроводов газовой сети сводится к подбору диаметров труб по расчетным расходам и потерям давления газа.

Предварительное определение диаметров отдельных расчетных участков газопроводов выполняется по формуле

где − часовой расход газа, м 3 , при нормальных начальных условиях давления и температуры газа (0,1 Мпа и 0°С); − абсолютное давление газа на расчетном участке газопровода, МПа; – скорость движения газа, м/с.

Далее определяют падение давления газа по длине газопровода и в местных сопротивлениях: на поворотах, в соединениях, в фасонных частях, арматуре и пр. С учетом дополнительного гидростатического напора газа это падение давления сравнивают с допустимым. Если падение давления превышает допустимую величину, то делают перерасчет диаметров на отдельных расчетных участках в сторону их увеличения.

Падение давления газа по длине газопровода низкого давления определяют в зависимости от режима движения газа, который характеризуется числом Рейнольдса:

Для ламинарного режима движения газа при Re ≤ 2000 падение давления газа на трение по длине:


для турбулентного режима при Re > 4000

где – падение давления, Па; – расход газа, м 3 /ч, при нормальных условиях (давление 0,1 МПа и температуре 0°С); d – внутренний диаметр газопровода, см; – коэффициент кинематической вязкости газа, м 2 /с, при нормальных начальных условиях состояния газа; – плотность газа, кг/м 3 , тоже при нормальных начальных условиях состояниях газа; – эквивалентная абсолютная шероховатость труб: для стальных труб = 0,01, полиэтиленовых = 0,005; – расчетная длина участка газопровода одного диаметра, см.

Для внутренних и наружных газопроводов расчетную длину определяют с учетом приведенной длины, зависящей от эквивалента длины трубы, учитывающей местные сопротивления:

где – расчетная длина газопровода, м; – действительная длина газопровода, м; − приведенная длина газопровода, м, равная:

– эквивалентная длина, на которой падение давления газа на трение равно падению давления в местных сопротивлениях при = 1; ∑ζ – сумма коэффициентов местных сопротивлений на расчетном участке газопровода длиной .

Эквивалентную длину определяют по формулам:

для ламинарного режима движения газа

для турбулентного режима движения газа

Для жилых домов в газопроводах низкого давления местные потери давления газа определяют как часть от потерь по длине, т.е. линейных потерь, %:

от ввода до стояка………………………………………………………… 25

на стояках……………………………………………………………………20

на внутриквартирной разводке в зависимости от длины, %:

до 2 м………………450 до 7 м…………………120

» 4 м………………300 » 12 м…………………50

Допустимую величину потерь давления принимают:

во внутренних и дворовых газопроводах……………60 даПа (60 мм)

в уличных и внутриквартальных газопроводах…….120 даПа (120 мм)

Таким образом, общая допустимая потеря давления в распределительных сетях низкого давления (от ГРП до самого отдаленного потребителя газа) составляет 180 даПа.

При гидравлическом расчете газопроводной сети здания необходимо учитывать естественный гидростатический напор газа, возникающий в связи с тем, что плотность газа меньше плотности воздуха, и как результат газ поднимается вверх по газопроводу.

Гидростатический напор, Па, определяют по формуле

где – высота подъема газа, т.е. разность геодезических отметок начального и

конечного участка газопровода, м;

И – плотность воздуха и газа, кг/м 3 , при нормальных начальных условиях

состояния газа (давлении 0,1 МПа и температуре 0°С).

В результате гидравлического расчета следует проверить условие обеспечения подачи газа потребителям, т.е. чтобы давление газа на вводе было не меньше требуемого давления с учетом гидростатического напора :

Величина требуемого давления равна:

где – необходимое давление газа у диктующего газового прибора, Па или даПа; − гидростатический напор, Па;

∑ – сумма потерь давления по длине и в местных сопротивлениях в сети от ввода до диктующего газового прибора, Па.

Если неравенство не выполняется, то следует увеличить диаметры труб, с тем чтобы уменьшить общие потери давления.

Для нормальной работы бытовых газовых приборов всегда указывается номинальное давление газа 2 (200 мм) или 1,3 кПа (130 мм), поэтому после ГРП в газовой сети устанавливают давление газа соответственно 3 (300 мм) или 2 кПа (200 мм).

Таким образом, при расчете газовых сетей в зданиях необходимо учитывать следующие условия:

1. На вводе создается располагаемое давление газа , равное действующему (фактическому) давлению плюс дополнительное естественное давление газа (гидростатический напор), т.е.

2. Располагаемое давление всегда должно быть не меньше требуемого:

3. Требуемое давление складывается из потерь по длине и в местных сопротивлениях и номинального давления у газовых приборов без естественного гидростатического напора.

4. Расчет газовой сети следует выполнять правильно, чтобы сумма допустимых потерь давления в газовых сетях не была бы меньше фактических потерь:

Допустимая величина потерь давления в газовых сетях приведена

в табл. 25.1.

При проектировании трубопроводов выбор размеров труб осуществляется на основании гидравлического расчета, определяющего внутренний диаметр труб для пропуска необходимого количества газа при допустимых потерях давления или, наоборот, потери давления при транспорте необходимого количества газа по срубам заданного диаметра.

Сопротивление движению газа в трубопроводах слагается из линейных сопротивлений трения и местных сопротивлений: сопротивления трения «работают» на всей протяженности трубопроводов, а местные создаются только в пунктах изменения скоростей и направления движения газа (углы, тройники и т.д.). Подробный гидравлический расчет газопроводов осуществляется по формулам, приведенным в СП 42-101–2003, в которых учтены как режим движения газа, так и коэффициенты гидравлического сопротивления газопроводов. Здесь приводится сокращенный вариант.

Для расчетов внутреннего диаметра газопровода следует воспользоваться формулой:

Dp = (626Аρ 0 Q 0 /ΔP уд) 1/m1 (5.1)

Где dp - расчетный диаметр, см; А, m, m1 - коэффициенты, зависящие от категории сети (по давлению) и материала газопровода; Q 0 - расчетный расход газа, м 3 /ч, при нормальных условиях; ΔР уд - удельные потери давления (Па/м для сетей низкого давления)

ΔP уд = ΔP доп /1,1L (5.2)

Здесь ΔР доп - допустимые потери давления (Па); L - расстояние до самой удаленной точки, м. Коэффициенты А, m, m1 определяются по приведенной ниже таблице.

Внутренний диаметр газопровода принимается из стандартного ряда внутренних диаметров трубопроводов: ближайший больший - для стальных газопроводов и ближайший меньший - для полиэтиленовых.

Расчетные суммарные потери давления газа в газопроводах низкого давления (от источника газоснабжения до наиболее удаленного прибора) принимаются не более 1,80 кПа (в том числе в распределительных газопроводах - 1,20 кПа), в газопроводах-вводах и внутренних газопроводах - 0,60 кПа.

Для расчета падения давления необходимо определить такие параметры, как число Рейнольдса, зависящее от характера движения газа, и коэффициент гидравлического трения λ. Число Рейнольдса - безразмерное соотношение, отражающее, в каком режиме движется жидкость или газ: ламинарном или турбулентном.

Переход от ламинарного к турбулентному режиму происходит по достижении так называемого критического числа Рейнольдса R eкp . При Re < Re кp течение происходит в ламинарном режиме, при Re > Re кp - возможно возникновение турбулентности. Критическое значение числа Рейнольдса зависит от конкретного вида течения.

Число Рейнольдса как критерий перехода от ламинарного к турбулентному режиму течения и обратно относительно хорошо действует для напорных потоков. При переходе к безнапорным потокам переходная зона между ламинарным и турбулентным режимами возрастает, и использование числа Рейнольдса как критерия не всегда правомерно.

Число Рейнольдса есть отношение сил инерции, действующих в потоке, к силам вязкости. Также число Рейнольдса можно рассматривать как отношение кинетической энергии жидкости к потерям энергии на характерной длине.
Число Рейнольдса применительно к углеводородным газам определяется по следующему соотношению:

Re = Q/9πdπν (5.3)

Где Q - расход газа, м 3 /ч, при нормальных условиях; d - внутренний диаметр газопровода, см; π - число пи; ν - коэффициент кинематической вязкости газа при нормальных условиях, м 2 /с (см. таб. 2.3).
Диаметр газопровода d должен отвечать условию:

(n/d) < 23 (5.4)

Где n - эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной:

Для новых стальных - 0,01 см;
- для бывших в эксплуатации стальных - 0,1 см;
- для полиэтиленовых независимо от времени эксплуатации - 0,0007 см.

Коэффициент гидравлического трения λ определяется в зависимости от режима движения газа по газопроводу, характеризуемого числом Рейнольдса. Для ламинарного режима движения газа (Re ≤ 2000):

λ = 64/Re (5.5)

Для критического режима движения газа (Re = 2000–4000):

λ = 0,0025 Re 0,333 (5.6)

Eсли значение числа Рейнольдса превышает 4000 (Re > 4000), возможны следующие ситуации. Для гидравлически гладкой стенки при соотношении 4000 < Re < 100000:

λ = 0,3164/25 Re 0,25 (5.7)

При значении Re > 100000:

λ = 1/(1,82lgRe – 1,64) 2 (5.8)

Для шероховатых стенок при Re > 4000:

λ = 0,11[(n/d) + (68/Re)] 0,25 (5.9)

После определения вышеперечисленных параметров падение давления для сетей низкого давления вычисляется по формуле

P н – P к = 626,1λQ 2 ρ 0 l/d 5 (5.10)

Где P н - абсолютное давление в начале газопровода, Па; Р к - абсолютное давление в конце газопровода, Па; λ - коэффициент гидравлического трения; l - расчетная длина газопровода постоянного диаметра, м; d - внутренний диаметр газопровода, см; ρ 0 - плотность газа при нормальных условиях, кг/м 3 ; Q - расход газа, м 3 /ч, при нормальных условиях;

Расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзитного и 0,5 путевого расходов газа на данном участке. Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) учитываются путем увеличения фактической длины газопровода на 5–10%.

Для наружных надземных и внутренних газопроводов расчетная длина газопроводов определяется по формуле:

L = l 1 + (d/100λ)Σξ (5.11)

Где l 1 - действительная длина газопровода, м; Σξ - сумма коэффициентов местных сопротивлений участка газопровода; d - внутренний диаметр газопровода, см; λ - коэффициент гидравлического трения, определяемый в зависимости от режима течения и гидравлической гладкости стенок газопровода.

Местные гидравлические сопротивления в газопроводах и вызываемые ими потери давления возникают при изменении направления движения газа, а также в местах разделения и слияния потоков. Источники местных сопротивлений - переходы с одного размера газопровода на другой, колена, отводы, тройники, крестовины, компенсаторы, запорная, регулирующая и предохранительная арматура, конденсатосборники, гидравлические затворы и другие устройства, приводящие к сжатию, расширению и изгибу потоков газа. Падение давления в местных сопротивлениях, перечисленных выше, допускается учитывать путем увеличения расчетной длины газопровода на 5–10%. Расчетная длина наружных надземных и внутренних газопроводов

L = l 1 + Σξl э (5.12)

Где l 1 - действительная длина газопровода, м; Σξ - сумма коэффициентов местных сопротивлений участка газопровода длиной l 1 , l э - условная эквивалентная длина прямолинейного участка газопровода, м, потери давления на котором равны потерям давления в местном сопротивлении со значением коэффициента ξ = 1.

Эквивалентная длина газопровода в зависимости от режима движения газа в газопроводе:
- для ламинарного режима движения

L э = 5,5 10 -6 Q/v (5.13)

Для критического режима движения газа

L э = 12,15d 1,333 v 0,333 /Q 0,333 (5.14)

Для всей области турбулентного режима движения газа

L э = d/ (5.15)

При расчете внутренних газопроводов низкого давления для жилых домов допустимые потери давления газа на местные сопротивления, % от линейных потерь:
- на газопроводах от вводов в здание до стояка - 25;
- на стояках - 20;
- на внутриквартирной разводке - 450 (при длине разводки 1–2 м), 300 (3–4 м), 120 (5–7 м) и 50 (8–12 м),

Приближенные значения коэффициента ξ для наиболее распространенных видов местных сопротивлений приведены в табл. 5.2.
Падение давления в трубопроводах жидкой фазы СУГ определяется по формуле:

H = 50λV 2 ρ/d (5.12)

Где λ - коэффициент гидравлического трения (определяется по формуле 5.7); V - средняя скорость движения сжиженных газов, м/с.

С учетом противокавитационного запаса средние скорости движения жидкой фазы принимаются:
- во всасывающих трубопроводах - не более 1,2 м/с;
- в напорных трубопроводах - не более 3 м/с.

При расчете газопроводов низкого давления учитывается гидростатический напор Нg, даПа, определяемый по формуле

H g = ±lgh(ρ a – ρ 0) (5.13)

Где g - ускорение свободного падения, 9,81 м/с 2 ; h - разность абсолютных отметок начальных и конечных участков газопровода, м; ρ а - плотность воздуха, кг/м 3 , при температуре 0°С и давлении 0,10132 МПа; ρ 0 - плотность газа при нормальных условиях кг/м 3 .

При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

Таблица 5.2. Коэффициенты местных сопротивлений ξ при турбулентном движении газа (Re > 3500)

Вид местного сопротивления Значение Вид местного сопротивления Значение
Отводы: Сборники конденсата 0,5–2,0
гнутые плавные 0,20–0,15 Гидравлические затворы 1,5–3,0
сварные сегментные 0,25–0,20 Внезапное расширение трубопроводов 0,60–0,25
Кран пробочный 3,0–2,0 Внезапное сужение трубопроводов 0,4
Задвижки: Плавное расширение трубопроводов (диффузоры) 0,25–0,80
параллельная 0,25–0,50 Плавное сужение трубопроводов (конфузоры) 0,25–0,30
с симметричным сужением стенки 1,30–1,50 Тройники
Компенсаторы: потоков слияния 1,7
волнистые 1,7–2,3 разделения потоков 1,0
лирообразные 1,7–2,4
П-образные 2,1–2,7


размер шрифта

ПРОЕКТИРОВАНИЕ И СТРОИТЕЛЬСТВО ГАЗОПРОВОДОВ ИЗ ПОЛИЭТИЛЕНОВЫХ ТРУБ ДИАМЕТРОМ ДО 300 ММ- СП 42-101-96 (2020) Актуально в 2018 году

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ГАЗОПРОВОДОВ

1. Гидравлический расчет газопроводов следует выполнять, как правило, на электронно-вычислительных машинах с использованием оптимального распределения расчетных потерь давления между участками сети.

При невозможности или нецелесообразности выполнения расчета на электронно-вычислительной машине (отсутствие соответствующей программы, отдельные небольшие участки газопроводов и т.п.) гидравлический расчет допускается производить по приведенным ниже формулам или номограммам, составленным по этим формулам.

2. Расчетные потери давления в газопроводах высокого и среднего давлений следует принимать в пределах давления, принятого для газопровода.

Расчетные потери давления в распределительных газопроводах низкого давления следует принимать не более 180 даПа (мм вод.ст.), в т.ч. в уличных и внутриквартальных газопроводах - 120, дворовых и внутренних газопроводах - 60 даПа (мм вод.ст.).

3. Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных, сельскохозяйственных и коммунально-бытовых предприятий принимаются в зависимости от давления газа в месте подключения, с учетом технических характеристик принимаемых к установке, газовых горелок, устройств автоматики безопасности и автоматики регулирования технологического режима тепловых агрегатов.

4. Гидравлический расчет газопроводов среднего и высокого давлений во всей области турбулентного движения газа следует производить по формуле:

где: P_1 - максимальное давление газа в начале газопровода, МПа;

Р_2 - то же, в конце газопровода, МПа;

l - расчетная длина газопровода постоянного диаметра, м;

d_i - внутренний диаметр газопровода, см;

тета - коэффициент кинематической вязкости газа при температуре 0°С и давлении 0,10132 МПа, м2/с;

Q - расход газа при нормальных условиях (при температуре 0°С и давлении 0,10132 МПа), м3/ч;

n - эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая для полиэтиленовых труб равной 0,002 см;

ро - плотность газа при температуре 0°С и давлении 0,10132 МПа, кг/м3.

5. Падение давления в местных сопротивлениях (тройники, запорная арматура и др.) допускается учитывать путем увеличения расчетной длины газопроводов на 5-10%.

6. При выполнении гидравлического расчета газопроводов по приведенным в настоящем разделе формулам, а также по различным методикам и программам для электронно-вычислительных машин, составленным на основе этих формул, диаметр газопровода следует предварительно определять по формуле:

(2)

где: t - температура газа, °C;

P_m - среднее давление газа (абсолютное) на расчетном участке газопровода, МПа;

V - скорость газа м/с (принимается не болев 7 м/с для газопроводов низкого давления, 15 м/с - среднего и 25 м/с - для газопроводов высокого давления);

d_i, Q - обозначения те же, что и в формуле (1).

Полученное значение диаметра газопровода следует принимать в качестве исходной величины при выполнении гидравлического расчета газопроводов.

7. Для упрощения расчетов по определению потерь давления в полиэтиленовых газопроводах среднего и высокого давлений рекомендуется использовать приведенную на рис. 1 номограмму, разработанную институтами ВНИПИГаздобыча и ГипроНИИГаз для труб диаметром от 63 до 226 мм включительно.

Пример расчета. Требуется запроектировать газопровод длиной 4500 м, максимальным расходом 1500 м3/ч и давлением в точке подключения 0,6 МПа.

По формуле (2) находим предварительно диаметр газопровода. Он составит:

Принимаем по номограмме ближайший больший диаметр, он составляет 110 мм (di=90 мм). Затем по номограмме (рис. 1) определяем потери давления. Для этого через точку заданного расхода на шкале Q и точку полученного диаметра на шкале d_i проводим прямую до пересечения с осью I. Полученная точка на оси I соединяется с точкой заданной длины на оси l и прямая продолжается до пересечения с осью. Поскольку шкала l определяет длину газопровода от 10 до 100 м, уменьшаем для рассматриваемого примера длину газопровода в 100 раз (с 9500 до 95 м) и соответствующим увеличением полученного перепада давления тоже в 100 раз. В нашем примере значение 106 составит:

0,55 100 = 55 кгс/см2

Определяем значение Р_2 по формуле:

Полученный отрицательный результат означает, что трубы диаметром 110 мм не обеспечат транспорт заданного расхода, равного 1500 м3/ч.

Повторяем расчет для следующего большего диаметра, т.е. 160 мм. В этом случае P2 составит:

= 5,3 кгс/см2 = 0,53 МПа

Полученный положительный результат означает, что в проекте необходимо заложить трубу диаметром 160 мм.

Рис. 1. Номограмма для определения потерь давления в полиэтиленовых газопроводах среднего и высокого давления

8. Падение давления в газопроводах низкого давления следует определять по формуле:

(3)

где: Н - падение давления, Па;

n, d, тета, Q, ро, l - обозначения те же, что и в формуле (1).

Примечание: для укрупненных расчетов вторым слагаемым, указанным в скобках в формуле (3), можно пренебречь.

9. При расчете, газопроводов низкого давления следует учитывать гидростатический напор Нg, мм вод.ст., определяемый по формуле:

где: h - разность абсолютных отметок начальных и конечных участков газопровода, м;

ро_a - плотность воздуха, кг/м3, при температуре 0°С и давлении 0,10132 МПа;

ро_o - обозначение то же, что в формуле (1).

10. Гидравлический расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец при максимальном использовании допустимой потери давления газа. Неувязка потерь давления в кольце допускается до 10%.

При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не болев 7 м/с для газопроводов низкого давления, 15 м/с - для газопроводов среднего давления, 26 м/с - для газопроводов высокого давления.

11. Учитывая сложность и трудоемкость расчета диаметров газопроводов низкого давления, особенно кольцевых сетей, указанный расчет рекомендуется проводить на ЭВМ или по известным номограммам для определения потерь давления в газопроводах низкого давления. Номограмма для определения потерь давления в газопроводах низкого давления для природного газа с ро =0,73 кг/м3 и тета =14,3 106м2/с приведена на рис. 2.

В связи с тем, что указанные номограммы составлены для расчета стальных газопроводов, полученные значения диаметров, вследствие более низкого коэффициента, шероховатости полиэтиленовых труб, следует уменьшать на 5-10%.

Рис. 2. Номограмма для определения потерь давления в стальных газопроводах низкого давления

ПРИЛОЖЕНИЕ 11
(справочное)

Газорегуляторные пункты предназначены для снижения давления газа и поддержания его на заданном уровне независимо от расхода. Для городов с населением от 50 до 250 тысяч человек рекомендуется двухступенчатая система газоснабжения.

При известном расчетном расходе газообразного топлива районом города определяется количество ГРП, исходя из оптимальной производительности

(=1500..2000м 3 /ч)по формуле:

После определения количества ГРП намечают их месторасположение на генплане района города, устанавливая их в центре газифицируемой площади на территории кварталов.

3.2 Гидравлический расчет магистральных газопроводов высокого и среднего давления (гвд и гсд)

На генплане районо города намечают прокладку газопроводов высокого и среднего давления. Закольцовывание газопроводов наиболее целесообразно в районах с многоэтажной застройкой. Трассировка газопроводов производится таким образом, чтобы длина ответвлений от кольцевого газопровода к потребителям была минимальной (не более 200 м для повышения надежности газовых сетей). К газопроводу высокого и среднего давления присоединяются все промышленные предприятия, котельные и ГРП.

Гидравлический расчет выполняется для двух аварийных и нормального режимов потребления газа.

Начальное давление принимается по заданию, оно равно 450 кПа. (На выходе из ГРС). В большинстве случаев перед ГРП достаточно иметь абсолютное давление газа примерно 200..250 кПа.

На расчетной схеме газопроводов высокого или среднего давления наносятся номера участков, расстояние между участками в метрах, расчетные расходы газа, наименование промышленных предприятий и их расходы, квартальные или районные котельные.

Сначала на расчетной схеме ГВД или ГСД намечается нормальный режим, когда поток газа движется по полукольцам. Точка слияния потоков наза находится посередине длины газопровода на замыкающем участке.

Для выравнивания нагрузок по полукольцам производим распределение расходов газа на котельные №1 и №2. Для этого определяем расходы газа по полукольцам магистрального газопровода и, учитывая нагрузку на ГРП, промышленные предприятия и др., кроме котельных, и находим абсолютную невязку по формуле:

где V 1 – суммарная нагрузка по первому полукольцу, м 3 /ч;

V 2 – суммарная нагрузка по второму полукольцу, м 3 /ч;

V 1 = V грп1+ V пп3 = 1400,02+3300 = 4700,02м 3 /ч;

V 2 = V пп2+ V грп2 = 2800+1422,5=4222,5 м 3 /ч;

∆V=V 1 -V 2 =4700,02-4222,5=477,5 м 3 /ч;

Расход газа на котельную №1 равен:

V кот2 =(V кот -∆V)/2, м 3 /ч;

V кот1 =(V кот -∆V)/2=(12340,4-477,5)/2=5931,4м 3 /ч

Расход газа на котельную №2 равен:

V кот2 =V кот -V кот1 =12340,4-5931,4=6409 м 3 /ч

Определение аварийного расхода газа:

V ав =0.59*Σ(V i *K об), м 3 /ч

V ав =0.59*Σ(V i *K об),=0.59*((1422,5+1400,02)*0.8+(3300 +2800)*0.9+ (5931,4+6409)*0.7)=9894,5 м 3 /ч,

Где К об =0.8, К об =0.7, К об =0.9 –коэффициенты обеспеченности газом при аварийных ситуациях для ГРП, промышленных предприятий и отопительно-производственных котельных.

Среднеквадратичная потеря давления газа по кольцу равна:

A ср =(Pн 2 – Рк 2)/Σl р =(450 2 -250 2)/8184=17,106 кПа 2 /м

где P н, Р к – начальное и конечное давление газа;

l р = 1.1*l ф =1.1*7440=8184 м – расчетная длина кольцевого газопровода,

где l ф –фактическая длина кольцевого газопровода.

По номограмме для гидравлического расчета газопроводов высокого или среднего давления. По V расч и А ср определяем предварительные диаметры кольцевого газопровода. Желательно по кольцу иметь один диаметр, максимум – два.

Первый аварийный режим, когда отключен головной участок газопровода слева от источника газоснабжения (ГРС), второй аварийный режим – когда отключен участок газопровода справа от ГРС.

Диаметрами газопровода задаемся предварительно выбранными по номограмме для гидравлического расчета высокого или среднего давления. Затем в зависимости от расчетного расхода газа по участкам и диаметра определяем фактическую квадратичную потерю давления газа на участках газопровода. Давление у конечного потребителя должно быть не ниже минимально допустимого предела (Р к +50), к Па абс.

Конечное давление определяется по формуле, кПа абс.

По V ав и А ср определяем предварительный диаметр кольцевого газопровода 325х8.0

Таблица 3 – Гидравлический расчет газопровода высокого и среднего давления

Длина участка, м

Расход газа, Vр, м3/ч

Диаметр газопровода

Средне- квадратичная потеря давления газа, А, кПа/м

Давление газа на участке, Па

1 аварийный режим (ГРС-1-2-3…)

Проверка:404≥250+50

2 аварийный режим (ГРС-1-7-6…)

Проверка:400≥250+50

Нормальный режим 1

Нормальный режим 2

Проверка:430≥250+50

Невязка: (430-428)/430*100=0,46 %

Расчет ответвлений газопровода нормал. режим

Расчет ответвлений газопровода 1 авар.

Расчет ответвлений газопровода 2 авар.