Виртуальный компьютерный музей. Вольта проверяет открытие Гальвани и «закрывает» его История открытия химического электричества

Луиджи Гальвани (1737-1798) итальянский учёный, закончил медицинский факультет Болонского университета и стал его преподавателем, а позже профессором, и с 1780 г изучал нервы и мышцы животных.
Ещё до опытов Гальвани было известно, что мышцы лягушки сокращаются (дёргаются) при пропускании через них электрического заряда. В середине 18 века многие увлекались опытами с электричеством, и Гальвани не был исключением. На его столе стояла электрическая машина, при вращении рукоятки которой можно было заряжать различные предметы и получать большие электрические искры. Выполняя свои опыты, Гальвани заметил, что мышцы лягушки сокращаются, если при этом проскакивают искры электрической машины. Его удивило, что мышцы сокращались тогда, когда они не касались машины. Значит, электричество может распространяться по воздуху? И в 1786 году Гальвани начал серию опытов, решив изучить действие на мышцы лягушки атмосферного электричества, которое образуется в грозовую погоду.

Он подвесил лапки лягушки к железной решётке балкона своего дома, используя медные крючки. Но мышцы не сокращались ни при ясной погоде, ни при грозе. А сократились они, когда при порыве ветра лапки коснулись железной решётки балкона. Это вновь удивило Гальвани и, как упорный учёный, он вернулся в лабораторию. Он положил лягушачьи лапки на железную пластинку и, прижав к пластине и лапкам медные крючки, наблюдал сокращение мышц. Гальвани провёл опыты с различными металлами. Сокращения были в одних случаях сильнее, в других - слабее.
Результаты экспериментов Гальвани опубликовал в 1791 году в «Трактате о силах электричества при мышечном движении». В нём он писал: «Если держать висящую лягушку пальцами за одну лапку так, чтобы медный крючок, проходящий через спинной мозг, касался серебряной пластинки, а другая лапка свободно могла касаться той же пластинки, то как только лапка касается указанной пластинки, мышцы начинают сокращаться». Гальвани заключил, что электрические заряды вырабатываются вследствие каких-то жизненных процессов в лапке лягушки, поскольку в то время учёные-физики (в том числе Гальвани) считали, что металлы могут быть только проводниками и не могут создавать электрический ток.

В данном выводе усомнился итальянский профессор Павийского университета Алессандро Вольта (1745-1827). Он провёл серию опытов, пробуя различные сочетания металлов, и пришёл к заключению, что контакт двух разных металлов, соприкасающихся с жидкостью в мышцах лягушки, является источником электричества. На него и реагирует лягушачья лапка. Вольта утверждал, что причиной сокращения мышц служит не «животное электричество», а наличие именно двух различных металлов (например, меди и железа или цинка и серебра и др.) А влажная лапка лягушки служит проводником и чувствительным электрометром.

Для доказательства своей правоты Вольта использовал два разнородных металла, положив их на язык. Роль электропроводящей жидкости играла слюна языка, но сокращения мышц языка не было - Вольта лишь чувствовал «электрическое пощипывание» на поверхности языка, где он касался металлов. Важно, что пощипывание отсутствовало, если два металла были одинаковыми! Тем самым Вольта доказал, что не мышца, а именно два разных металла являются возбудителями электричества.
Доводы Вольты разрушали надежды Гальвани на создание нового «электрического» направления в медицине. Поэтому он направляет все усилия на то, чтобы доказать свою правоту. Он проводит серию опытов, в которых не использует металлы, а лишь стеклянные палочки, и находит, что между нормальным и повреждённым участками нерва любых животных течёт электрический ток. Так Гальвани открыл «животное» электричество.
Итак, многолетний спор закончился - оба его участника оказались правы. Биолог Гальвани стал первопроходцем в изучении биологического электричества, а физик Вольта - создателем химического источника тока, которому современники дали название «вольтова столба» (см. рисунок). Этот простой прибор сослужил огромную роль в физике и технике, но это - тема отдельной увлекательной статьи из истории физики.

Появление «Трактата...» вызвало огромный интерес в самых разных странах. Уже в следующем году выходит его второе издание. Гальвани на короткое время становится знаменит. Многие крупные ученые занялись повторением его опытов и проверкой результатов. Среди них был и итальянский физик Алессандро Вольта, в юности заочный ученик аббата Нолле.

В это время (1792 г.) Вольта был уже известным физиком, профессором университета в Павии, членом Лондонского Королевского общества. К этому времени он изобрел новый чувствительный электроскоп, электрический конденсатор и ряд других приборов. Его научные интересы всю жизнь были в основном связаны с электричеством, и работа Гальвани произвела на него огромное впечатление.

В первые же 10 дней после получения «Трактата...» он ставит массу новых опытов, полностью подтверждает результаты Гальвани и задается целью внести меру в эту новую область науки, т. е. провести количественное изучение «животного электричества», измерить электрометрами его величину и величину заряда, необходимого для вызова сокращения мышцы, («Ведь никогда нельзя сделать ничего ценного, если не сводить явлений к градусам и измерениям, особенно в физике» - писал Вольта.).

В первых же опытах он обнаруживаем что препарат лягушки крайне чувствителен к электрическому разряду и сокращение возникает при столь слабых зарядах лейденской банки, которые не обнаруживаются самыми лучшими электрометрами.

Гальвани во всех своих опытах прикладывал один конец металлического проводника к нерву, а другой - к мышце. Это было связано с его идеей о том, что мышца - лейденская банка, которая разряжается через нерв.

Вольта разнообразит условия опытов, делает разные препараты, прикладывает проводник различными способами. Его интересует количественная сторона дела, поэтому он ищет такие условия, при которых минимальный заряд вызывает сокращение мышц. При этом он выясняет, что лучше всего сокращение возникает тогда, когда внешним проводником замыкаются два разных участка хорошо отпрепарованного нерва. Отсюда он делает вывод, что вовсе не мышца разряжается через провод и нерв, а, напротив, нерв, который более чувствителен к раздражению, возбуждается и что-то передает в мышцу.

Итак, вера Вольта в теоретические взгляды Гальвани уже сильно поколеблена. Если Гальвани мог ошибиться, считая именно мышцу источником «животного электричества», то он мог сделать и другие ошибки. И вот у Вольта возникает сомнение в самой основе работы Гальвани - в существовании «животного электричества».

Он ставит вопрос, почему между двумя близкими точками одного и того же нерва, которые во всем похожи, происходит разряд, когда их замыкают проводником? Это противоречит принципу причинности. А почему замыкающий проводник для успеха опыта должен состоять из двух разных металлов? Ведь роль этого проводника, согласно взглядам Гальвани, лишь в том, чтобы замкнуть цепь. Но для замыкания цепи достаточно одного вида металла.

Вольта начинает детально изучать этот вопрос. Он пробует сочетания разных пар металлов. Если эти металлы играют роль простого проводника, то их природа не должна иметь значения. Но если эти металлы почему-то сами являются источником электричества (вот новая революционная идея Вольта, которому удалось преодолеть авторитет Джильберта!), то сила источника может зависеть от сочетания металлов. И Вольта находит такую зависимость.

Действие двух различных веществ на препарат лягушки тем сильнее, чем дальше отстоят они друг от друга в следующем ряду: цинк, олово, свинец, железо, латунь, бронза, медь, платина, золото, серебро, ртуть, графит, уголь.

Из этого перечисления, приведенного в работе 1794 г., видно, как активно экспериментирует Вольта. У него все более крепнет уверенность, что источником электричества в опытах Гальвани была не мышца лягушки, а те два металла, которыми Гальвани к ней прикасался.

Но ведь Гальвани наблюдал сокращения мышц и при использовании всего одного металла! Вольта подробно изучает и этот случай и показывает, что два куска меди могут содержать разные примеси, что достаточно загрязнить один конец проволоки, чтобы она действовала как два разных металла, достаточно небольшой разницы температур на противоположных краях одного и того же куска металла, чтобы он играл роль раздражителя и т, д.

Наконец, Вольта делает окончательный вывод: контакт двух разных металлов является новым источником электричества, на которое реагирует «живой» электроскоп. Именно этим объясняются опыты Гальвани!

Этот вывод Вольта подкрепляет еще целым рядом разнообразных экспериментов. Например, Вольта берет проволочки из серебра и олова, одни концы этих проволочек соединяет между собой, а другими концами касается языка: одним металлом самого кончика, а другим чуть дальше.

Он обнаруживает, что если к кончику языка приложено серебро, то чувствуется щелочной вкус, а если олово - то кислый. Если бы источником электричества была сама мышца языка, то вкус не должен был бы меняться от изменения замыкающего металла,- рассуждает Вольта. Но если роль источника электричества играют два разнородных металла, тогда ясно, что, меняя их местами, мы меняем положение «плюса» и «минуса». В одних случаях электрический флюид входит в нервы кончика языка, а в другом - выходит из них. Это и вызывает разный вкус. Может быть работа всех органов чувств связана с электричеством? - спрашивает Вольта (и как мы теперь знаем, это именно так).

Вы помните, что в описываемую нами эпоху было модно ставить эффектные опыты. Такой опыт придумал Гальвани - «электрический нервный маятник»,- когда лапка лягушки, подвешенная на медном крючке, касалась серебряной шкатулки. (Все дело тут в меди и серебре! - сказал бы Вольта.) И Вольта тоже придумал эффектный опыт.

Четыре человека «...образуют друг с другом цепь, причем один прикасается пальцем к кончику языка соседа, другой таким же образом к поверхности глазного яблока своего другого соседа, а двое остальных держат мокрыми пальцами один за лапку, а другой за спину свежепрепарованную... лягушку.

Наконец, первый в ряду держит также в мокрой руке цинковую пластинку, а последний держит серебряную пластинку, и затем они приводят эти пластинки во взаимное соприкосновение.

В тот же момент на верхушке языка, к которой прикасается человек, держащий в руке цинк, появится ощущение кислого вкуса; в глазу? к которому прикасается палец соседа, появится ощущение вспышки света; и в то же время лапки лягушки, находящиеся в двух руках, начнут сильно сокращаться».

Все нервы, оказавшиеся на пути электрического флюида - нервы языка, нервы глаза, нервы лягушки,- являются просто очень чувствительными электрометрами, а металлы, от соприкосновения которых и возникает эффект, не простые проводники, а «двигатели» электричества.

«Таким образом, вместо того, чтобы говорить о животном электричестве, можно было бы с большим правом говорить о металлическом электричестве» (Вольта, 1794 г.). Ведь если люди в той цепи из четырех человек не будут держать серебро и цинк, а просто коснутся руками друг друга, то ничего не произойдет. По Гальвани, разряд «живой лейденской банки», которая находится в лягушке, должен произойти еще успешнее, ведь замыкающая цепь стала короче из нее убрали участок, ничего не прибавив; но эффекта нет. Значит, причина не в лягушке, а в металлах - в контакте серебра и цинка.

Уже из приведенных примеров ясно, что Вольта был прав. В знаменитом трактате Гальвани нет никаких доказательств существования «животного электричества».

Наблюдение, сделанное Гальвани 26 сентября 1786 г., в день рождения электробиологии, имело причиной чисто физическое явление, на основе которого Вольта изобрел источник постоянного тока: гальванический элемент, или вольтов столб.

Это изобретение приведет к интенсивному развитию учения об электричестве и электротехнике и сделает XIX век веком не только пара, но и электричества.

Несмотря на помощь друзей и последователей, поддержку таких крупных естествоиспытателей, как А. Гумбольдт, Гальвани проиграл спор с Вольта. Аргументы Вольта казались вполне убедительными. В 1797 г наступает окончательный крах: по политическим мотивам Гальвани выгнали из университета. Он лишился возможности работать и через год умер.

Однако на этот раз Вольта ошибся. Во всех трех описанных выше опытах Гальвани действительно имел дело с «животным электричеством», которое ему наконец-то удалось открыть.

После изобретения источника постоянного тока Вольта становится знаменит и всеми признан. В 1801 г, Наполеон приглашает его в Париж, где в Академии наук он демонстрирует свой знаменитый вольтов столб» Умер Вольта в 1827 г, в возрасте 82 лет, овеянный славой.

Беркинблит М. Б., Глаголева Е. Г. "Электричество в живых организмах"

Вплоть до конца XVIII века физики, изучавшие электрические явления, имели в своем распоряжении лишь источники статического электричества - куски янтаря, шары из плавленой серы, электрофорные машины, лейденские банки. С ними экспериментировали многие ученые, начиная с английского физика и врача Уильяма Гильберта (1544–1603). Имея в распоряжении такие источники, можно было открыть, например, закон Кулона (1785), но нельзя было открыть даже закон Ома (1826), не говоря уже о законах Фарадея (1833). Потому что накопленный статически заряд был мал и не мог обеспечить ток, длящийся хотя бы несколько секунд.

Ситуация изменилась после работ профессора медицины Болонского университета Луиджи Гальвани (1737–1798), открывшего, как он полагал, «животное электричество». Его знаменитый трактат назывался «О силах электричества при мышечном движении». В некоторых опытах Гальвани произошел первый в мире прием радиоволн. Генератором служили искры электрофорной машины, приемной антенной - скальпель в руках Гальвани, а приемником - лягушачья лапка. Помощник Гальвани проводил опыты с электрической машиной в некотором отдалении от препарированной лягушки. При этом жена Гальвани Лючия заметила, что лягушачьи лапки сокращаются в тот самый момент, когда в машине проскакивает искра, так что видна роль и случайности и наблюдательности.

Опытами Гальвани заинтересовался итальянский физик Алессандро Джузеппе Антонио Анастасио Вольта (1745–1827). Он был уже известным ученым: в 1775 году сконструировал смоляной электрофор, то есть обнаружил вещества-электреты, в 1781-м - чувствительный электроскоп, а немного позже - конденсатор, электрометр и другие приборы. В 1776 году он же обнаружил электропроводность пламени, а в 1778-м впервые получил чистый метан из собранного им в болотах газа и продемонстрировал возможность зажечь его от электрической искры. Вольта вначале был ревностным сторонником теории «животного электричества» Гальвани. Но собственноручное повторение его опытов убедило Вольту, что опыты Гальвани следует объяснять совершенно иначе: лягушачья ножка - не источник, а лишь приемник электричества. Источник же - разные металлы, которые касаются друг друга. «Металлы не только прекрасные проводники, - писал Вольта, - но и двигатели электричества».

Это было ключевое утверждение, позволившее создать гальванические элементы, батарейки, аккумуляторы, которые окружают нас со всех сторон и всю жизнь. Принцип их действия изложен в школьном учебнике, причем значительно подробнее, чем это нужно для дальнейшего. Суть проста: в проводящей среде (электролите) находятся два разных проводника (электрода), которые вступают с ней в такие реакции, что они заряжаются разноименными зарядами. Если соединить эти электроды (анод и катод) внешним проводником (нагрузкой), по ней начнет протекать ток.

Возражая Гальвани, Вольта сначала избавился от лягушки, заменив ее собственным языком. Он, например, клал на язык золотую или серебряную монету, а под язык - медную. Как только две монеты соединяли кусочком проволоки, сразу же во рту ощущался кислый вкус, знакомый каждому, кто пробовал на язык контакты батарейки для карманного фонаря. Затем Вольта и вовсе исключил из экспериментов «животное электричество», используя в опытах только приборы.

Оставался один шаг до изобретения в 1800 году первого постоянно действующего источника электрического тока. Это произошло, когда Вольта соединил последовательно пары цинковых и медных пластинок, разделенных прокладками из картона или кожи, которые были пропитаны раствором щелочи или соленой водой. Эту конструкцию назвали по имени изобретателя «вольтовым столбом». Конструкция была тяжелой, жидкость из прокладок выдавливалась, поэтому Вольта заменил ее чашечками с раствором кислоты, в которые были опущены цинковые и медные (или серебряные) полоски или кружочки. Чашки были соединены последовательно, а чтобы выводы батареи были близко, отдельные ее элементы Вольта расположил по кругу. Эту конструкцию по ее форме назвали «вольтовой короной».

После своего открытия Вольта потерял к нему интерес и отошел от научной работы, предоставив другим ученым развивать учение об электричестве. Но вклад Алессандро Вольты в учение об электричестве столь значим, что его именем названа единица напряжения. А когда Наполеон увидел в библиотеке Академии наук изображение лаврового венка с надписью «Великому Вольтеру», он стер несколько букв, так что получилось: «Великому Вольте». Вольтов столб и его разновидности дали возможность многочисленным ученым проводить эксперименты с длительно действующим источником постоянного тока. Именно с этого открытия началась эра электричества. Вероятно, самый восторженный отзыв об открытии Вольты оставил его биограф французский физик Доминик Франсуа Араго (1786–1853): «Столб, составленный из кружков медного, цинкового и влажного суконного. Чего ожидать априори от такой комбинации? Но это собрание, странное и, по-видимому, бездействующее, этот столб из разнородных металлов, разделенных небольшим количеством жидкости, составляет снаряд, чуднее которого никогда не изобретал человек, не исключая даже телескопа и паровой машины».

«Огромные наипаче батареи»

Вольта поступил очень мудро, послав в марте 1800 года письмо Джозефу Бэнксу (1743–1820), президенту Лондонского королевского общества - ведущего научного центра того времени. В письме Вольта описал различные конструкции своих источников электричества, которые в память о Гальвани назвал гальваническими. Бэнкс был ботаником, поэтому он показал письмо своим коллегам - физику и химику Уильяму Николсону (1753–1815) и врачу и химику, президенту Королевского колледжа хирургов Энтони Карлайлу (1768–1842). И уже в апреле они по описанию Вольты изготовили батарею из 17, а затем из 36 последовательно соединенных цинковых кружков и монет в полкроны, которые тогда были из серебра 925-й пробы. Между ними помещались картонные прокладки, пропитанные соленой водой.

В ходе опытов Николсон обнаружил около контакта цинка и медного проводника выделение пузырьков газа. Он определил, что это водород - причем по запаху, ибо водород, получаемый при растворении цинка в кислотах или щелочах, часто имеет запах. В цинке обычно есть примесь мышьяка, который восстанавливается до арсина, а продукты его разложения пахнут чесноком. В сентябре 1800 года немецкий физик Иоганн Риттер (1776–1810), собрав газ, выделявшийся при электролизе воды, с другого электрода батареи, показал, что это кислород. В том же году английский химик Уильям Крукшенк (1745–1800) расположил цинковые и медные пластинки в горизонтальном длинном ящике - при этом легко было заменять отработанные (полурастворившиеся и покрытые продуктами реакции) цинковые электроды. В нерабочем состоянии электролит из ящика сливали, чтобы не расходовать цинк зря. В качестве электролита Крукшенк использовал раствор хлорида аммония, а затем - разбавленную кислоту. Фарадей рекомендовал смесь слабых (1–2 %) растворов серной и азотной кислот. С таким электролитом цинк медленно растворялся с выделением маленьких пузырьков водорода. Водород выделялся и на медном аноде, а ЭДС одного элемента батареи была всего 0,5 В.

Выделение водорода на цинке связано с поляризацией этого электрода, которая увеличивает внутреннее сопротивление и понижает потенциал элемента. Чтобы предотвратить это явление, британский физик и электротехник Уильям Стёрджен (1783–1850), создатель первого электромагнита, амальгамировал цинковые пластинки. В 1840 году английский врач Альфред Сми (1818–1877) заменил медный электрод серебряным, покрытым шероховатым слоем платины. Это ускоряло выделение из раствора пузырьков водорода и увеличивало ЭДС. Такие батареи широко использовали в гальванотехнике. Так, методом гальванопластики были изготовлены скульптуры на Исаакиевском соборе в Петербурге. Метод получения электролитическим путем копий в металле разработал петербургский академик Мориц Герман (Борис Семенович) Якоби в 1838 году, как раз во время строительства собора. Подробнее об этой технике можно прочитать на сайте «Библиотека с книгами по скульптуре» .

Одну из лучших батарей своего времени собрал известный английский медик и химик Уильям Хайд Волластон (Уолластон, 1766–1828), прославившийся открытием палладия и родия, а также технологией изготовления тончайших металлических нитей, которые применялись в чувствительных приборах. В каждом элементе цинковый электрод был с трех сторон окружен медным с малым зазором, через который пузырьки водорода выделялись в воздух.

Знаменитый английский физик Гемфри Дэви (1778–1829) сначала проводил опыты с батареей, подаренной ему самим Вольтой; затем начал изготовлять все более мощные собственной конструкции - из медных и цинковых пластинок, разделенных водным раствором аммиака. Первая его батарея состояла из 60 таких элементов, но через несколько лет он собрал очень большую батарею, уже из тысячи элементов. С помощью этих батарей он впервые смог получить такие металлы, как литий, натрий, калий, кальций и барий, а в виде амальгамы - магний и стронций.

Одну из самых больших батарей создал в 1802 году физик и электротехник Василий Владимирович Петров (1761–1834). Его «огромная наипаче батарея» из 4200 медных и цинковых пластин «по полтора дюйма» размером располагалась в узких деревянных ящиках. Вся батарея была составлена из четырех рядов, каждый длиной около 3 м, соединенных последовательно медными скобками. Теоретически такая батарея может давать напряжение до 2500 В, а реально давала около 1700. Эта гигантская батарея позволила Петрову провести множество опытов: он разлагал током различные вещества, а в 1803 году впервые в мире получил электрическую дугу. С ее помощью удалось расплавлять металлы, ярко освещать большие помещения. Однако обслуживание этой батареи было исключительно трудоемким. Во время опытов пластины окислялись, и их приходилось регулярно чистить. При этом один работник мог за час почистить 40 пластин. Работая по 8 часов в день, этот работник в одиночку потратил бы не меньше двух недель, чтобы приготовить батарею к следующим опытам.

Вероятно, самый необычный гальванический элемент изготовил немецкий химик Фридрих Вёлер (1800–1882). В 1827 году, нагревая хлорид алюминия с калием, он получил металлический алюминий - в виде порошка. Ему понадобилось 18 лет, чтобы получить алюминий в виде слитка. В элементе Вёлера оба электрода были из алюминия! Причем один был погружен в азотную кислоту, другой - в раствор гидроксида натрия. Сосуды с растворами соединял солевой мостик.

Даниель, Лекланше и другие

Основу современных гальванических элементов разработал в 1836 году Джон Фредерик Даниель (1790–1845), английский физик, химик и метеоролог (он изобрел также измеритель влажности - гигрометр). Даниелю удалось преодолеть поляризацию электродов. В его первом элементе в медный сосуд с раствором сульфата меди был вставлен кусочек пищевода быка, наполненный разбавленной серной кислотой с цинковым стержнем посередине. Фарадей предложил изолировать цинк оберточной бумагой, поры которой тоже могут пропускать ионы электролита. Но Даниель в качестве диафрагмы стал использовать пористый глиняный сосуд. Заметим, что с медным и цинковым электродами, погруженными в растворы соответственно нитрата меди и сульфата цинка, еще в 1829 году экспериментировал Антуан Сезар Беккерель (1788–1878), дед более известного Антуана Анри Беккереля, открывшего радиоактивность и разделившего в 1903 году с супругами Кюри Нобелевскую премию по физике. Элемент Даниеля длительно давал стабильное напряжение 1,1 В. За это изобретение Даниель был удостоен высшей награды Королевского общества - золотой медали Копли. За прошедшие 180 лет появилось множество модификаций этого элемента; при этом их разработчики пытались разными способами избавиться от пористого сосуда.

С появлением телеграфных линий возникла потребность в более удобных и недорогих источниках тока, без пористых перегородок, с одним электролитом и с большим сроком службы. В 1872 году элемент Даниеля сменил нормальный элемент Джосайи Латимера Кларка (1822–1898): положительный электрод - ртуть, отрицательный - 10%-ная амальгама цинка, ЭДС 1,43 В. А в 1892 году ему на смену пришел ртутно-кадмиевый элемент Эдварда Вестона (1850–1936) с ЭДС 1,35 В. Его модификация под названием нормальный элемент Вестона используется до сих пор в качестве эталона напряжения - при малых нагрузках он дает высокостабильное напряжение в диапазоне 1,01850–1,01870 В, известное с точностью до пятого знака.

Один из вариантов элемента Даниеля, в котором не было пористой перегородки, разработал в 1859 году немецкий физик и изобретатель Генрих Мейдингер (1831–1905). На дне сосуда расположены медный электрод и кристаллы медного купороса (они поступают из воронки), цинковый электрод укреплен вверху. Тяжелый насыщенный раствор сульфата меди остается в нижней части: диффузии ионов меди к цинковому электроду противодействует разряд этих ионов при работе элемента, а граница между растворами выделяется очень резко. Отсюда название источников такого типа - гравитационный элемент. Элемент Мейдингера без ухода и добавления реактивов может непрерывно работать в течение нескольких месяцев. Этот элемент широко использовали в Германии с 1859 по 1916 год как источник питания для железнодорожной телеграфной сети. Аналогичные источники существовали во Франции и в США - под названием элементов Калло и Локвуда. Хорошими характеристиками обладал элемент, предложенный в 1839 году английским физиком и химиком Уильямом Робертом Грове (1811–1896). Электродами в нем служили цинк и платина, разделенные пористой перегородкой и погруженные соответственно в растворы серной и азотной кислот.

Роберт Вильгельм Бунзен (1811–1899), известный своими открытиями и изобретениями (спектральный анализ, горелка и др.), заменил дорогой платиновый электрод прессованным угольным. Угольные электроды присутствуют и в современных батарейках, однако у Бунзена они были погружены в азотную кислоту, играющую роль деполяризатора (сейчас им служит диоксид марганца). Элементы Бунзена долгое время широко использовались в лабораториях. Они могли обеспечить, хотя и недолго, большой ток. Элементы Бунзена, например, использовал молодой Чарльз Мартин Холл (1863–1914), открывший электролитический способ получения алюминия. Множество таких элементов было соединено в батарею; при этом на 1 г выделенного алюминия уходило почти 16 г цинка! Французский химик и изобретатель Эдм Ипполит Мари-Дэви (1820–1893) заменил в элементе Бунзена азотную кислоту на пасту из сульфата ртути (I) и серной кислоты; электролитом служил раствор сульфата цинка. В 1859 году было проведено сравнение батареи из 38 этих элементов (ЭДС каждой 1,4 В) с батареей из 60 элементов Даниеля. Первая проработала 23 недели, вторая - только 11. Однако высокая стоимость и ядовитость солей ртути препятствовали широкому распространению таких элементов.

Немецкий физик Иоганн Кристиан Поггендорф (1796–1877) в качестве деполяризатора использовал в своем элементе раствор дихромата калия в серной кислоте. Поггендорф известен как издатель журнала Annalen der Physik und Chemie - он занимал этот пост на протяжении 36 лет. Элемент Поггендорфа давал наибольшую ЭДС (2,1 В) и непродолжительно - большой ток. Важным преимуществом была возможность извлечь из раствора цинковый электрод, чтобы его очистить или заменить.

Уоррен де ла Рю (1815–1889), который впервые получил фотографии Луны и Солнца, в 1868 году собрал большую батарею из 14 тысяч элементов. Электродами в них служили серебро, покрытое хлоридом серебра, и амальгамированный цинк, а электролитом - раствор хлорида натрия, хлорида цинка или гидроксида калия. Цинк-хлорсеребряные элементы используются до сих пор; их хранят в сухом виде и активируют, заполняя пресной или морской водой, после чего элемент может работать до 10 месяцев. Такие элементы могут использовать потерпевшие аварию на воде. В более дешевых, но и менее мощных элементах применяется Cu/CuCl-электрод.

Один из самых известных химических источников тока - марганцево-цинковый элемент, описанный в 1868 году французским химиком Жоржем Лекланше (1839–1882) и разработанный им несколькими годами ранее. В этом элементе угольный электрод окружен деполяризатором из диоксида марганца, смешанным для лучшей электропроводности с угольным порошком. Чтобы смесь не рассыпалась при заливке электролита (раствора хлорида аммония), ее вместе с анодом помещали в пористый сосуд. Элемент Лекланше служил долго, не требовал ухода и мог давать довольно большой ток. Пытаясь сделать его более удобным, Лекланше решил загустить электролит клейстером. Это революционным образом изменило дело: элементы Лекланше перестали бояться случайного опрокидывания, их можно было использовать в любом положении. Изобретение Лекланше тут же получило коммерческий успех, а сам изобретатель, забросив свою основную профессию, открыл фабрику по производству элементов. Марганцево-цинковые элементы Лекланше были дешевыми и выпускались в больших количествах. Однако называть их «сухими» не вполне правильно: электролит в них был «полужидким», а в настоящих сухих элементах он должен быть твердым. Лекланше умер в возрасте 43 лет, не дожив до изобретения таких элементов.

С 1802 по 1812 год было сконструировано несколько сухих батарей, самая известная из которых - так называемый замбониев, или дзамбониев столб (см. «Химию и жизнь» № 6, 2007). Итальянский физик и священник Джузеппе Дзамбони (1776–1846) в 1812 году собрал столб из нескольких сотен бумажных кружков, на одной стороне которых был тонкий слой цинка, а на другой - смесь диоксида марганца и растительной камеди. Электролитом служила содержащаяся в бумаге влага. Такой столб давал высокое напряжение, но только очень малый ток. Именно столб Дзамбони позволяет уже почти два века позвякивать чашечкам в звонке, находящемся в Кларендонской лаборатории в Оксфорде. Однако для практических целей такая батарея не подходит.

Первый сухой гальванический элемент, который можно было применять на практике, запатентовал в 1886 году немецкий инженер Карл Гасснер (1855–1942). Протекающие в нем химические реакции были такими же, как и в предыдущих конструкциях: Zn + 2MnO 2 + 2NH 4 Cl → 2MnO(OH) + Cl 2 . При этом цинковый электрод одновременно служил и наружным контейнером. Электролитом была смесь муки и гипса, на ней был абсорбирован раствор хлоридов аммония и цинка (гипс потом заменили крахмалом). Добавление в электролит хлорида цинка значительно снижало коррозию цинкового электрода и продлевало срок хранения элемента. Положительным электродом служил угольный стержень, который окружала масса из диоксида марганца и сажи в бумажном мешочке. Сверху элемент герметизировали битумом. Емкость элементов компенсировали их размером. Солевой элемент Гасснера в общих чертах сохранился до наших дней и выпускается в количестве многих миллиардов штук в год. Но в ХХ веке конкуренцию им составили щелочные элементы, которые иногда ошибочно называют «алкалиновыми», не трудясь заглянуть в словарь при переводе с английского.

В заключение отметим, что гальванические батареи той или иной конструкции были основными источниками электричества вплоть до изобретения динамо-машины.

Электродвижущая сила. - «Элементы» .

Гальванический элемент – это источник электрической энергии, принцип действия основан на химических реакциях. Большинство современных батареек и аккумуляторов подпадает под определение и относится к рассматриваемой категории. Физически гальванический элемент состоит из проводящих электродов, погруженных в одну или две жидкости (электролиты).

Общая информация

Гальванические элементы делятся на первичные и вторичные в соответствии со способностью вырабатывать электрический ток. Оба вида считаются источниками и служат для различных целей. Первые вырабатывают ток в ходе химической реакции, вторые функционируют исключительно после зарядки. Ниже обсудим обе разновидности. По количеству жидкостей различают две группы гальванических элементов:

Непостоянство источников питания с единственной жидкостью заметил Ом, открыв неприемлемость гальванического элемента Волластона для экспериментов по исследованию электричества. Динамика процесса такова, что в начальный момент времени ток велик и вначале растёт, потом за несколько часов падает до среднего значения. Современные аккумуляторы капризны.

История открытия химического электричества

Мало известен факт, что в 1752 году гальваническое электричество упоминалось Иоганном Георгом. Издание Исследование происхождения приятных и неприятных ощущений, выпущенное Берлинской академией наук, даже придавало явлению вполне правильное толкование. Опыт: серебряную и свинцовую пластины соединяли с одного конца, а противоположные с разных сторон прикладывались к языку. На рецепторах наблюдается вкус железного купороса. Читатели уже догадались, описанный способ проверки батареек часто использовали в СССР.

Объяснение явления: видимо, имеются некие частицы металла, раздражающие рецепторы языка. Частицы испускаются одной пластиной при соприкосновении. Причём один металл при этом растворяется. Собственно, налицо принцип действия гальванического элемента, где цинковая пластина постепенно исчезает, отдавая энергию химических связей электрическому току. Объяснение сделано за полвека до официального доклада Королевскому обществу Лондона Алессандро Вольта об открытии первого источника питания. Но, как происходит часто с открытиями, к примеру, электромагнитным взаимодействием, опыт остался незамечен широкой научной общественностью и не исследован должным образом.

Добавим, это оказалось связано с недавней отменой преследования за колдовство: немногие решались после печального опыта «ведьм» на изучение непонятных явлений. Иначе обстояло дело с Луиджи Гальвани, с 1775 года работающим на кафедре анатомии в Болонье. Его специализаций считались раздражители нервной системы, но светило оставил значимый след не в области физиологии. Ученик Беккарии активно занимался электричеством. Во второй половине 1780 года, как следует из воспоминаний учёного (1791, De Viribus Electricitatis in Motu Muscylary: Commentarii Bononiensi, том 7, стр. 363), в очередной раз производилось препарирование лягушки (опыты и потом длились долгие годы).

Примечательно, что необычное явление подмечено ассистентом, в точности, как с отклонением стрелки компаса проводом с электрическим током: открытие сделали лишь косвенно связанные с научными исследованиями люди. Наблюдение касалось подергиваний нижних конечностей лягушки. В ходе опыта ассистент задел внутренний бедренный нерв препарируемого животного, ножки дёрнулись. Рядом, на столе стоял электростатический генератор, на приборе проскочила искра. Луиджи Гальвани немедленно загорелся идеей повторить опыт. Что удалось. И опять на машине проскочила искра.

Образовалась параллель связи с электричеством, и Гальвани возжелал узнать, станет ли на лягушку действовать подобным образом гроза. Оказалось, что природные катаклизмы не оказывают заметного воздействия. Лягушки, прикреплённые медными крючками за спинной мозг к железной ограде, дёргались вне зависимости от погодных условий. Опыты не удавалось реализовать со 100-процентной повторяемостью, атмосфера воздействия не оказывала. В итоге Гальвани нашёл сонм пар, составленных из разных металлов, которые при соприкосновении между собой и нервом вызывали подёргивание лапок у лягушки. Сегодня явление объясняют различной степенью электроотрицательности материалов. К примеру, известно, что нельзя алюминиевые пластины клепать медью, металлы составляют гальваническую пару с ярко выраженными свойствами.

Гальвани справедливо заметил, что образуется замкнутая электрическая цепь, предположил, что лягушка содержит животное электричество, разряжаемое подобно лейденской банке. Алессандро Вольта не принял объяснения. Внимательно изучив описание экспериментов, Вольта выдвинул объяснение, что ток возникает при объединении двух металлов, непосредственно или через электролит тела биологического существа. Причина возникновения тока кроется в материалах, а лягушка служит простым индикатором явления. Цитата Вольты из письма, адресованного редактору научного журнала:

Проводники первого рода (твёрдые тела) и второго рода (жидкости) при соприкосновении в некоторой комбинации рождают импульс электричества, сегодня нельзя объяснить причины возникновения явления. Ток течёт по замкнутому контуру и исчезает, если целостность цепи нарушена.

Вольтов столб

Лепту в череду открытий внёс Джованни Фаброни, сообщивший, что при размещении двух пластинок гальванической пары в воду, одна начинает разрушаться. Следовательно, явление имеет отношение к химическим процессам. А Вольта тем временем изобрёл первый источник питания, долгое время служивший для исследования электричества. Учёный постоянно искал способы усиления действия гальванических пар, но не находил. В ходе опытов создана конструкция вольтова столба:

  1. Попарно брались цинковые и медные кружки в плотном соприкосновении друг с другом.
  2. Полученные пары разделялись мокрыми кружками картона и ставились друг над другом.

Легко догадаться, получилось последовательное соединение источников тока, которые суммируясь, усиливали эффект (разность потенциалов). Новый прибор вызывал при прикосновении ощутимый для руки человека удар. Подобно опытам Мушенбрука с лейденской банкой. Однако для повторения эффекта требовалось время. Стало очевидно, что источник энергии имеет химическое происхождение и постепенно возобновляется. Но привыкнуть к понятию нового электричества оказалось непросто. Вольтов столб вёл себя подобно заряженной лейденской банке, но…

Вольта организует дополнительный эксперимент. Снабжает каждый из кружков изолирующей ручкой, приводит в соприкосновение на некоторое время, потом размыкает и проводит исследование электроскопом. К тому времени уже стал известен закон Кулона, выясняется, что цинк зарядился положительно, а медь – отрицательно. Первый материал отдал электроны второму. По указанной причине цинковая пластина вольтова столба постепенно разрушается. Для изучение работы назначили комиссию, которой представили доводы Алессандро. Уже тогда путём умозаключений исследователь установил, что напряжение отдельных пар складывается.

Вольта объяснил, что без мокрых кружков, прокладываемых между металлами, конструкция ведёт себя как две пластинки: медная и цинковая. Усиления не происходит. Вольта нашёл первый ряд электроотрицательности: цинк, свинец, олово, железо, медь, серебро. И если исключить промежуточные металлы между крайними, «движущая сила» не изменяется. Вольта установил, что электричество существует, пока соприкасаются пластины: сила не видна, но легко чувствуется, следовательно, она истинна. Учёный 20 марта 1800 года пишет президенту Королевского общества Лондона сэру Джозефу Бэнксу, к которому обращался впервые и Майкл Фарадей.

Английские исследователи быстро обнаружили: если на верхнюю пластину (медь) капнуть воды, в указанной точке в районе контакта выделяется газ. Они проделали опыт с обоих сторон: провода подходящей цепи заключили в колбы с водой. Газ исследовали. Оказалось, что газ горючий, выделяется лишь с единственной стороны. С противоположной заметно окислилась проволока. Установлено, что первое является водородом, а второе явление происходит вследствие избытка кислорода. Установлено (2 мая 1800 года), что наблюдаемый процесс — разложение воды под действием электрического тока.

Уильям Крукшенк немедленно показал, что аналогичное допустимо проделать с растворами солей металлов, а Волластон окончательно доказал идентичность вольтова столба статическому электричеству. Как выразился учёный: действие слабее, но обладает большей продолжительностью. Мартин Ван Марум и Христиан Генрих Пфафф зарядили от элемента лейденскую банку. А профессор Хампфри Дэви установил, что чистая вода не может служить в этом случае электролитом. Напротив, чем сильнее жидкость способна окислять цинк, тем лучше действует вольтов столб, что вполне согласовывалось с наблюдениями Фаброни.

Кислота намного улучшает работоспособность, ускоряя процесс выработки электричества. В конце концов Дэви создал стройную теорию вольтова столба. Он пояснил, что металлы изначально обладают неким зарядом, при замыкании контактов вызывающим действие элемента. Если электролит способен окислять поверхность донора электронов, слой истощённых атомов постепенно удаляется, открывая новые слои, способные давать электричество.

В 1803 году Риттер собрал столб из чередующихся кружков серебра и мокрого сукна, прообраз первого аккумулятора. Риттер зарядил его от вольтова столба и наблюдал процесс разрядки. Правильное толкование явлению дал Алессандро Вольта. И лишь в 1825 году Огюст де ла Рив доказал, что перенос электричества в растворе осуществляется ионами вещества, наблюдая образование оксида цинка в камере с чистой водой, отделённой от соседней мембраной. Заявление помогло Берцелиусу создать физическую модель, в которой атому электролита представлялись составленными из двух противоположно заряженных полюсов (ионов), способных диссоциировать. В результате получилась стройная картина переноса электричества на расстояние.

Принято думать, что сделавшие эпоху в развитии учения об электричестве открытия Гальвани были плодом случая. Вероятно, такое мнение основано на начальных словах трактата Гальвани: «Я разрезал и препарировал лягушку… и, имея в виду совершенно другое, поместил её на стол, на котором находилась электрическая машина… Один из моих помощников остриём скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки… Другой заметил… что это удаётся тогда, когда из кондуктора машины извлекается искра… Удивленный новым явлением, он тотчас же обратил на него моё внимание, хотя я замышлял совсем другое и был поглощён своими мыслями».

Однако случайность открытия была очень незначительной, тот же Гальвани или кто-либо другой непременно пришли бы к открытию явления. Не случайно у Гальвани стояла электрическая машина, так же как и не случайным было то, что он задумал какой-то эксперимент с препаратом. Несомненно, что идеи французских материалистов о материальности психических процессов толкали научную мысль на раскрытие в первую очередь физической природы ощущения, а успехи, достигнутые физиологами, микроскопистами и химиками в понимании таких важных жизненных процессов, как кровообращение, пищеварение, дыхание, стимулировали такие поиски. Изучение электрических явлений, уже сведшее с высот на землю гром и молнию, дало материал для вывода о важной роли электричества в биологии. Сокращение мышц при электрическом разряде («электрический удар») приближало мысль, что и в поведении электрических, скатов, угрей, сомов мы имеем дело также с электрическим ударом. И, действительно, опыты Джона Уолша (Walsh) и Ларошели доказали электрическую природу удара ската, а анатом Гунтер дал точное описание электрического органа этого животного. Исследования Уолша и Гунтера, были опубликованы в «Phil. Trans.» в 1773 г. Случайное открытие философа, Зульцера в 1752 г., что прикосновение к кончику языка двух разнородных металлов вызывает своеобразное кислое вкусовое ощущение, было, им описано, ибо автор чувствовал научный интерес этого открытия в эпоху изучения действия физических раздражителей. В числе этих физических, раздражителей первое место занимало электричество, и практическая медицина возлагала большие надежды на электрические методы лечения.

О степени интереса к электрическим методам лечения можно судить, например, по письму Марата к Руму де Сен-Лорен от 9 ноября 1783 г., в котором он сообщает о своих физических исследованиях и об отношении к ним академии. Из письма и приложенных к нему документов, между прочим, видно, что врач и физик Марат, будущий знаменитый «друг народа», с успехом применял физические методы лечения и разработал интересную методику экспериментального исследования природы огня, света и электричества. Опыты Марата привлекали большое внимание, в том числе и таких деятелей, как Франклин. Специально по вопросу об электромедицине Марат говорит в этом письме о своём намерении «заняться электричеством в области медицины, наукой которая так сильно интересует общество». Критикуя премированную работу аббата Бертелона, который «выдаёт электризацию за универсальное средство от всех болезней», Марат сообщает о своей работе, получившей премию Руанской академии, предложившей конкурсную тему: «Определить степень и условия, при которых можно рассчитывать на электричество в лечении болезней». Как видим, интерес к электромедицине в эпоху Гальвани был значительным.

Письмо Марата, в котором он обвиняет академию в невнимании к его научным заслугам, интересно и с другом отношении. Разработанная Маратом методика наблюдений в тёмной комнате позволила, по его утверждению, видеть материю огня и электричества, наблюдать дифракцию у краёв призмы. Эти идеи Марата - несомненный отзвук увлечения различными «флюидами», в том числе и психическими флюидами. Академия, не нашедшая возможным проверить опыты Марата, оказалась вынужденной образовать авторитетную комисию для проверки опытов заведомого шарлатана Месмера. Месмер, прибывший в Париж в 1771 г., ловко использовал модные научные теории об огненных, электрических, магнитных и других флюидах и утверждал, что им открыт новый вид тонкого агента - «животный магнетизм». «Животный магнетизм,-говорил Месмер, может скопляться, концентрироваться и переноситься без помощи тел посредствующих; он отражается, как свет…». Само собой разумеется, что «животный магнетизм есть универсальное лекарство и спаситель человеческого рода». Месмер имел большой успех, его поклонники собирали ему огромные суммы денег, преследовали противников месмеризма вплоть до нападения на Бертолле; король предлагал ему пожизненную пенсию в 20 тысяч франков за раскрытие секрета.

После его отъезда из Франции была образована правительственная комиссия в составе четырёх медиков и академиков - Леруа, Бори, Лавуазье и Бальи. Бальи представил доклад комиссии в августе 1784 г. Этот доклад вызвал протесты и возражения со стороны месмеристов, так как, комиссия после тщательного анализа фактов пришла к выводу, что постоянного агента не существует и что случаи извлечения им нервных трансов, имеют своим источником воображение. Вообще говоря, в донесении комиссии не говорится о невозможности животного магнетизма, такая гипотеза не противоречила научным воззрениям того времени, но она не обнаружила неизменного действия в проверенных ею фактах, а потому и констатировала отсутствие физического агента в этих фактах.

Таким образом, ко времени начала опытов Гальвани (1786) не было, недостатка в попытках физической трактовки психических и физиологических явлений. Практическая медицина сделала свои выводы из успехов, естествознания и из научных воззрений эпохи, почва для возникновения, учения о животном электричестве была вполне подготовлена.

Нет ничего удивительного в том, что профессор анатомии и медицины Болонского университета Луиджи Гальвани (родился 19 сентября 1737 г., умер 4 декабря 1798 г.) был необычайно поражён наблюдением, сделанным его сотрудниками, с описания которого начинается его знаменитый трактат «О силах электричества при мышечном движении». Как справедливо указал впоследствии Вольта, в самом факте вздрагивания лапки препарированной лягушки при электрическом разряде с физической точки зрения не было ничего нового: это явление электрической индукции а именно явление так называемого возвратного удара, разобранного Магоном в 1779 г. Но Гальвани подошёл к факту не как физик, а как физиолог, его заинтересовала способность мёртвого препарата проявлять жизненные сокращения под влиянием электричества.

Он с величайшим терпением и искусством исследовал эту способность, изучая её локализацию в препарате, условия возбудимости, действие различных форм электричества и в частности атмосферного электричества. Классические опыты Гальвани сделали его отцом электрофизиологии, значение которой в наше время трудно переоценить. Но Гальвани во время, исследования действия атмосферы на препарат пришёл к замечательному открытию. Тщетно ожидая сокращения мышц в ясную погоду, он, «утомлённый… тщетным ожиданием… начал прижимать медные крючки, воткнутые в спинной мозг, к железной решетке» … «Хотя я, - говорит он далее, - нередко наблюдал сокращения, но ни одно не соответствовало перемене в состоянии атмосферы и электричества… Когда же я перенёс животное в закрытую комнату, поместил на железной пластине и стал прижимать к ней проведённый через спинной мозг крючок, то появились, такие же сокращения, такие же движения». Отсюда Гальвани, осуществив ряд экспериментов, приходит к выводу о существовании нового источника и нового вида электричества. Его приводят к такому выводу опыты составления замкнутой цепи из проводящих тел и металлов и лягушечного препарата. Особенно эффектен следующий опыт: «если держать висящую лягушку пальцами за одну лапку так, чтобы крючок, проходящий через спинной мозг, касался бы какой-нибудь серебряной пластинки, а другая лапка свободно могла бы касаться той же пластинки, то как только эта лапка касается указанной пластинки, мышцы начинают немедленна сокращаться. При этом лапка встаёт и поднимается и затем, вновь упав на пластинку, вместе с тем приходит в соприкосновение с последней, снова по той же причине, поднимается вверх, и, таким образом, продолжает далее попеременно подниматься и падать, так что эта лапка, к немалому восхищению и радости наблюдающего за ней, начинает, кажется, соперничать с каким-то электрическим маятником».

В такой сложной форме был открыт новый источник электричества, создающий в проводящей замкнутой цепи длительный разряд. Естественно, что физиолог Гальвани не мог допустить и мысли, что причина явления кроется в контакте разнородных металлов, и предложил, что мышца является своеобразной батареей лейденских банок, непрерывно возбуждаемой действием мозга, которое передаётся по нервам.

Теория животного электричества подводила базу под практическую электромедицину, и открытие Гальвани произвело сенсацию. В числе ревностных адептов новой теории оказался и знаменитый Вольта, не замедливший приступить к проверке и к тщательному количественному исследованию явления. Это исследование он предпринял во всеоружии современной ему электрометрической техники. В первых своих статьях («О животном электричестве», письмо доктору Баронио от 3 апреля 1792 г., и двух статьях «О животном электричестве», напечатанных в «Физико-медицинском журнале» Брунвелли) Вольта разделяет точку зрения Гальвани. Однако уже здесь намечается будущий отход от этой теории, выдвигаются на первый план физические моменты эффекта. Прежде всего Вольта устанавливает, что соответствующим образом «препарированная лягушка представляет, если можно так выразиться, животный электрометр, несравненно более чувствительный, чем всякий другой самый чувствительный электрометр».

Затем Вольта устанавливает важность контакта разнородных металлов. «Такое различие металлов безусловно необходимо; если же обе обкладки из одного и того же металла, то следует, чтобы они отличались, по крайней мере, по способу их приложения…» (т. е. по состоянию контактной поверхности). Далее Вольта показывает, что ток электрического флюида обусловлен контактом разнородных металлов и может производить не только мышечные сокращения, но и другие раздражения нервов. В частности Вольта повторяет опыт Зульцера (не зная пока, что этот опыт был уже осуществлён) и обращает внимание, «что этот вкус продолжает ощущаться и даже усиливается в продолжение всего времени, пока эти два металла, олово и серебро, остаются приложенными один к кончику языка, другой к другим частям последнего и пока они соприкасаются друг с другом, составляя некоторую проводящую дугу. Это доказывает, что переход электрического флюида с одного места на другое совершается постоянно и беспрерывно». Наконец, Вольта устанавливает полярность эффекта: перемена обкладок местами вызывает изменение вкуса с кислого на щелочной. В свете этих фактов теория мышечной лейденской банки Вольта представляется несостоятельной.

В последующих статьях: «Описание открытий Гальвани» (два письма к члену Королевского общества - Кавалло), «Третья статья о животном электричестве» (письмо к проф. Альдини - племяннику Гальвани) и «Новая статья о животном электричестве» (три письма к Вассали - профессору Туринского университета), Вольта полностью порывает с теорией животного электричества и даёт физическую трактовку эффекта. Во втором письме к Кавалло Вольта пишет: «… я открыл новый весьма замечательный закон, который относится собственно не к животному электричеству, а к обычному электричеству, так как этот переход электрического флюида, переход, который не является моментальным, каким был бы разряд, но постоянным и продолжающимся всё время, пока сохраняется сообщение между обеими обкладками, имеет место независимо от того, наложена ли эта обкладка на живое или мёртвое животное вещество, или на другие не металлические, но достаточно хорошие проводники, как, например, па воду или на смоченные ею телаь. А первое письмо к Вассали (от 10 февраля 1794 г.) Вольта прямо начинает вопросом: «Что вы думаете о так называемом животном электричестве? Что касается меня, то я давно убеждён, что всё действие возникает первоначально вследствие прикосновения металлов к какому-нибудь влажному телу или самой воде».

Физиологические раздражения нервов являются результатом проходящего тока, и эти раздражения «тем сильнее, чем дальше отстоят друг от друга применённые два металла в том ряду, в каком они поставлены нами здесь: цинк, оловянная фольга, обыкновенное олово в пластинках, свинец, железо, латунь и различного качества бронза, медь, платина, золото, серебро, ртуть, графит. Этот знаменитый ряд напряжений Вольта и открытый им закон напряжений составляют ядро всего эффекта. Животные органы, по Вольта, «являются чисто пассивными, простыми, очень чувствительными электрометрами, и активны не они, а металлы, т. е. что от соприкосновения последних и происходит первоначальный толчок электрического флюида, одним словом, что такие металлы не простые проводники или передатчики электричества…». В одном из примечаний к этой статье Вольта вновь подчёркивает, что к идее о контактном напряжении он пришёл уже более трёх лет тому назад и уже в 1793 г. дал свой ряд металлов.

Таким образом, суть эффекта заключается, по мнению Вольта, в свойстве проводников «вызывать и приводить в движение электрический флюид там, где несколько таких проводников разного класса и сорта встречаются и соприкасаются между собою».

«Отсюда и получается, что если из них три и больше, и притом различные, составляют вместе проводящую цепь, если, например, между двумя металлами - серебром и железом, и т. д. - ввести один или более именно из того класса, который назван классом влажных так как они представляют жидкую массу или содержат некоторую влагу (к ним причисляются животные тела и все их свежие сочные части), если, говорю я, проводник этого второго класса находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов, то вследствие этого возникает постоянный электрический ток того или иного направления, смотря по тому, с какой из сторон действие на него оказывается сильнее в результате косновения».

Так ясно и чётко Вольта сформулировал условия возникновения постоянного тока: наличие замкнутой цепи из различных проводников, причём по крайней мере один должен быть проводником второго класса и соприкасаться с различными проводниками первого класса. Когда гальванисты возражали опытами, в которых мышечные движения возбуждались дугой из однородного проводника и даже, как в опытах Валли, соприкосновениями различных препаратов без металлического проводника, то Вольта указывал, что и в этих опытах имеется неоднородность. Концы одной проводящей дуги различны, осуществить их полную однородность почти невозможно, контактная разность может возникнуть и при соприкосновении различных проводников второго класса.

«… Неметаллические проводники, проводники жидкие или содержащие в себе в той или иной мере влагу, те, которые мы называем проводниками второго класса, и они одни, сочетаясь друг с другом, будут являться возбудителями, как металлы, или проводники первого класса в сочетании с проводниками второго класса…».

В дальнейшем Вольта в целях устранения всяких сомнений в не физиологической, а чисто физической сути дела исключает животные препараты, служившие до тех пор индикаторами тока. Он разрабатывает методику измерений контактных разностей потенциалов своим конденсаторным электрометром. Об этих классических опытах Вольта сообщает в письме к Грену в 1795 г. и Альдини в 1798 г.

20 марта 1800 г. Вольта написал свое знаменитое письмо Бенксу с описанием своего столба - изобретения, произведшего подлинную революцию в науке об электричестве. В письме к Барту от 29 августа 1801 г. Вольта сообщает о найденном им законе напряжения для проводников первого класса [А/В + В/С = А/С]. 7 и 21 ноября 1801 г. в Париже он прочитал две лекции о своем столбе и законе напряжений. Первое сообщение об этих лекциях было опубликовано Пфаффом в IX томе гильбертовских «Анналов» за 1801 г., второе - Био в X томе тех же «Анналов». Так завершилась история выдающегося открытия и вместе с тем история научной деятельности Гальвани и Вольта
Гемфри Дэви.(Александр Вольта родился в Комо 19 февраля 1745 г. Уже с 18 лет ведёт переписку с Нолле по вопросам физики, на девятнадцатом году написал латинскую поэму о современных физико-химических открытиях. Первая работа 1764 г. посвящена лейденской банке, следующая работа 1771 г. - «Эмпирические исследования способов возбуждения электричества и улучшение конструкции машины». С 1774 г. - преподаватель физики в Комо. В 1777 г. изобретает электрофор, затем конденсатор и электрофор с конденсатором. Занимаясь исследованием горючего газа, изобретает электрический пистолет, водородную лампу, эвдиометр. С 1777 г.- профессор физики в Павии. В 1793 г. занимается опытами по расширению газов. В восьмидесятых годах изобретает пламенный зонд. За изобретение столба получил награду от Наполеона, был избран членом Института. После своего знаменитого изобретения отошёл от научной работы и только в 1817 г. опубликовал два исследования о граде и о периодичности гроз. В 1819 г. оставил профессорскую кафедру. Умер 5 марта 1827 г. в один день с Лапласом.)

Природа открытого эффекта была очень сложна, и при тогдашнем уровне физико-химических наук и физиологии раскрыть картину явления было невозможно. В споре о природе явления по существу оказались правы обе стороны. Гальвани стал основоположником электрофизиологии, а Вольта - основоположником учения об электричестве. В лабиринте противоречивых опытов и наблюдений Вольта нащупал правильный путь, нашёл опытный физический закон напряжений, дал правильное описание цепи электрического тока. Впереди ещё предстояли большие споры по вопросу о причине и природе контактной разности потенциалов, но в её существовании уже сомнений не. оставалось, а в вольтовом столбе наука получила мощное орудие исследования, которым она и не замедлила воспользоваться.